Algebraic combinatorics, homework 1.

Exercise 1. Give simpler expressions for

$$
\sum_{k=0}^{n} k\binom{n}{k}^{2}, \sum_{k=0}^{n}(-1)^{k}\binom{m}{k}\binom{m}{n-k}
$$

by algebraic proofs (i.e. using generating functions). Thanks to a bijective argument, prove that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Exercise 2. Let m, n be positive integers. How many paths are there from $(0,0)$ till (m, n) with steps either $(0,1)$ or $(1,0)$?

Suppose now the step $(1,1)$ is allowed as well. What is the number f_{n} of paths from $(0,0)$ till (n, n) ? Prove that $\left(f_{0}=1\right.$ is a convention)

$$
\sum_{n \geq 0} f_{n} x^{n}=\frac{1}{\sqrt{1-6 x+x^{2}}}
$$

Exercise 3. Let a_{n} be the number of subsets K of $\llbracket 1, n \rrbracket$ such that, for any $1 \leq j \leq n-1, j$ and $j+1$ are not both in K, and 1 and n are not both in K. By convention $a_{0}=2$ and $a_{1}=1$ (the empty subset is the only solution: as $n=1$, $\left.a_{n}=a_{1}\right)$. Prove that, for any $n \geq 2$,

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Give a rational expression for $\sum_{k \geq 0} a_{k} x^{k}$. What is the limit of $a_{n}^{1 / n}$ as $n \rightarrow \infty$?
Exercise 4. For a given $k \geq 2$, prove that the number of partitions of n in which every part appears at most $k-1$ times is equal to the number of partitions for which every part is not divisible by k.

Exercise 5. Let a_{1}, \ldots, a_{t} be positive integers (not necessarily distinct) with greatest common divisor 1 . Let b_{n} denote the number of solutions of

$$
a_{1} x_{1}+\cdots+a_{t} x_{t}=n
$$

in non-negative integers x_{1}, \ldots, x_{t}. What is the generating function $\sum_{n \geq 0} b_{n} x^{n}$? Prove that $b_{n} \sim b n^{t-1}$ for some coefficient $b>0$ you will identify.

Exercise 6. Prove that for $n \geq 1$ there are 2^{n-1} compositions of n. Show in the list of all of these compositions of $n \geq 4$, the number 3 appears $n 2^{n-5}$ times.

Exercise 7, bonus Find an exponential generating function and an explicit formula for the number of involutions in the symmetric group, that is, permutations π of $\llbracket 1, n \rrbracket$ such that $\pi^{2}=\mathrm{Id}$.

