## Algebraic combinatorics, homework 3.

Exercise 1. For any given $x>0$, what is $\sum_{d \geq 1} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor$ ?
Exercise 2. What are the adjacency matrix and the Laplacian matrix for this graph? How many spanning trees can you find? Are there Eulerian tours?


Exercise 3. What are the adjacency matrix and the Laplacian matrix for this directed graph? How many spanning trees, rooted at the central vertex, can you find? Are there Eulerian tours? How many are there starting with edge $e$ ?


Exercise 4. Let $C_{i+j}$ be the number of paths from $A_{i}$ to $B_{j}$ in the joint directed graph, where all edges go from left to right. Prove that $C_{n+1}=$ $\sum_{i=0}^{n} C_{i} C_{n-i}$. Prove that

$$
C_{n}=\frac{\binom{2 n}{n}}{n+1} .
$$

Denote by $H_{n}=\left(C_{i+j}\right)_{1 \leq i, j \leq n}$ the Hankel matrix corresponding to the Calalan numbers $C_{k}$ 's. Prove that $\operatorname{det} H_{n}=1$.


Exercise 5. The Motzkin number $M_{n}$ is the number of lattice paths from $(0,0)$ to $(n, 0)$ with horizontal steps and diagonal steps up or down, staying above $y=0$. For example, $M_{3}=4$, corresponding to the joint paths. prove
 that $\operatorname{det} H_{n}=1$ where $H_{n}$ is the Hankel matrix corresponding to the sequence $\left(M_{n}\right)_{n \geq 0}$.

Exercise 6. Let $r, s$ be two positive integers and $S=\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq n\right\}$ be a set of lattice points with $0 \leq a_{1} \leq \cdots \leq a_{n} \leq r, 0 \leq b_{1} \leq \cdots \leq b_{n} \leq s$. Count the number of lattice paths from $(0,0)$ to $(r, s)$ with steps up or right that avoid the set $S$.

