Algebraic combinatorics, homework 4.

Exercise 1. Let c_{n} be the number of set partitions of $\llbracket n \rrbracket$ such that each block has even number of elements. Show that the exponential generating function for c_{n} is equal to

$$
e^{(\cosh x)-1}
$$

Exercise 2. Let $\tau(n)=|\{d \in \mathbb{N}: d \mid n\}|$.
a) Prove that, for $\mathfrak{R e}(s)>1$,

$$
\sum_{n \geq 1} \frac{\tau(n)}{n^{s}}=\zeta(s)^{2}
$$

where ζ is the Riemann zeta function.
b) Give two different proofs that, as $x \rightarrow \infty$,

$$
\sum_{n \leq x} \tau(n) \sim x \log x
$$

Exercise 3. Let P be a finite partially ordered set. If $x<y$, a sequence $x=x_{0}<$ $x_{1}<\cdots<x_{k}=y$ is called a chain of length k from x to y. Let $c_{k}(x, y)$ denote the number of such chains (so $c_{1}(x, y)=1$). Prove that the Möbius function of this poset satisfies

$$
\mu(x, y)=\sum_{k \geq 1}(-1)^{k} c_{k}(x, y)
$$

Exercise 4. Let $c_{n, i, k}$ be the number of graphs on n vertices, with i edges and k components. Show that

$$
\sum_{n, k, i \geq 0} c_{n, i, k} \alpha^{i} \beta^{k} \frac{z^{n}}{n!}=\left(\sum_{n \geq 0}(1+\alpha)^{\binom{n}{2}} \frac{z^{n}}{n!}\right)^{\beta}
$$

Exercise 5. Prove that the following two sets of partitions have the same size:
(i) the partitions of n in which the even summands appear at most once;
(ii) the partitions of n for which every summand appears at most three times.

Exercise 6. Let $f(n, q)$ be the number of permutations of $\llbracket 1, n \rrbracket$ whose cycles all have length $>q$.
a) Prove that the exponential generating function of $(f(n, q))_{n \geq 0}$ is

$$
\sum_{n \geq 0} \frac{f(n, q)}{n!} z^{n}=e^{\sum_{n>q} \frac{z^{n}}{n}}=\frac{e^{-\left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{q}}{q}\right)}}{1-z}
$$

b) Prove that, as $n \rightarrow \infty$,

$$
f(n, q) \sim e^{-H_{q}} n!
$$

where $H_{q}=1+\frac{1}{2}+\cdots+\frac{1}{q}$.

Exercise 7. Remember the recurrence $S_{n, k}=S_{n-1, k-1}+k S_{n-1, k}$ for the Stirling numbers. Prove that

$$
\operatorname{det}\left(S_{m+i, j}\right)_{i, j=1}^{n}=(n!)^{m}
$$

where $m \geq 0, n \geq 1$. Hint: use the Gessel-Viennot Lemma and a graph corresponding to the recurrence.

Exercise 8. Let G be the hypercube graph on 2^{n} vertices, that is, the vertices are the binary strings of length n and there is an edge between two vertices if they differ in exactly one coordinate. Find the number of spanning trees of G.

Hint: Fix a vertex v in G. If w is another vertex of G, let $v \cdot w$ be the dot product of v and w when they are viewed as vectors in \mathbb{Z}^{n}. Show that the column vector whose w-th coordinate is $v \cdot w$ is a right eigenvector for the Laplacian of G.

Exercise 9. Prove that $\left\{\frac{\varphi(n)}{n}, n \geq 1\right\}$ is dense in $[0,1]$.
Exercise 10. A rectangle is called good if it has at least one side length in \mathbb{N}. A puzzle consists in rectangular pieces, all of them being good. Together, they form a partition of a large rectangle. Prove that the large rectangle is good.

