Algebraic combinatorics, homework 5.

Exercise 1. Prove that the number of standard Young tableaux of shape (n, n) equals the Catalan number C_{n}. Prove that the number of permutations $\pi \in \mathcal{S}_{n}$ with longest decreasing subsequence of length at most two equals the Catalan number C_{n}.

Exercise 2. We abbreviate $e_{k}(n)$ for $e_{k}\left(x_{1}, \ldots, x_{n}\right)$, and similarly for the complete symmetric functions h_{k}. Prove that

$$
e_{k}(n)=e_{k}(n-1)+x_{n} e_{k-1}(n-1), h_{k}(n)=h_{k}(n-1)+x_{n} h_{k-1}(n) .
$$

The Stirling number of the first kind $c_{n, k}$ can be defined as the number of elements in \mathcal{S}_{n} with k disjoint cycles. The Stirling number of the second kind $S_{n, k}$ can be defined as the number of partitions of the set $\llbracket 1, n \rrbracket$ into k subsets. Prove that

$$
c_{n, k}=c_{n-1, k-1}+(n-1) c_{n-1, k}, S_{n, k}=S_{n-1, k-1}+k S_{n-1, k}
$$

Prove that

$$
\binom{n}{k}=e_{k}\left(1^{n}\right)=h_{k}\left(1^{n-k+1}\right), c_{n, k}=e_{n-k}(1,2, \ldots, n-1), S_{n, k}=h_{n-k}(1,2, \ldots, k) .
$$

Exercise 3. Prove the following determinantal identity:

$$
\begin{aligned}
\operatorname{det}\left(\left(x_{i}+a_{n}\right) \ldots\left(x_{i}+a_{j+1}\right)\left(x_{i}+b_{j}\right) \ldots\right. & \left.\left(x_{i}+b_{2}\right)\right)_{i, j=1}^{n} \\
& =\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \prod_{2 \leq i \leq j \leq n}\left(b_{i}-a_{j}\right) .
\end{aligned}
$$

Explain why it generalizes the Vandermonde identity.
Exercise 4. Prove that $s_{n}\left(x_{1}, \ldots, x_{n}\right)=h_{n}\left(x_{1}, \ldots, x_{n}\right)$.
Exercise 5. Prove that any character of \mathcal{S}_{n} is an integer-valued function.
Exercise 6. Let $p_{k}\left(x_{1}, \ldots, x_{r}\right)=\sum_{j=1}^{r} x_{j}^{k}$, and for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in \operatorname{Par}(m)$, $p_{\lambda}=\prod_{i=1}^{\ell} p_{\lambda_{i}}$. Prove that, in the language of Pólya's theory,

$$
e_{n}\left(x_{1}, \ldots, x_{r}\right)=Z\left(\mathcal{S}_{n} ; p_{1},-p_{2}, \ldots,(-1)^{n-1} p_{n}\right)
$$

Prove that $\left\{p_{\lambda}, \lambda \in \operatorname{Par}(m)\right\}$ is a basis for $\Lambda^{m}(X)$.
Exercise 7. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. Prove the Giambelli identity,

$$
s_{(\alpha \mid \beta)}=\operatorname{det}\left(s_{\left(\alpha_{i} \mid \beta_{j}\right)}\right)_{i, j=1}^{n},
$$

where we use the Frobenius notation for partitions.

