Analytic number theory, homework 1.

Exercise 1. Let q be a positive integer. Show that if $\sigma > 1$ then

$$\sum_{n\geq 1,n\wedge q=1}n^{-s}=\zeta(s)\prod_{p\mid q}(1-p^{-s}),$$

where the product is over primes dividing q.

Exercise 2. Let $G(s) = \sum p^{-s}$ be the prime zeta function. Prove that

$$G(s) = \sum_{d=1}^{\infty} \frac{\mu(d)}{d} \log \zeta(ds)$$

for any if $\sigma > 1$. Show that G can be extended to $\sigma > 0$, the extension having a countable number of (logarithmic) singularities on this domain.

Exercise 3. For a given $k \in \mathbb{N}^*$, let $\sigma_k(x)$ be the number of integers in $[\![2, x]\!]$ such that $\Omega(n) = k$. Prove that

$$\sigma_k(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)! \log x}$$

as $x \to \infty$.

Exercise 4. Prove that, for any |z| < 2 and $\sigma > 1$,

$$\sum_{n\geq 1} \frac{z^{\omega(n)}}{n^s} = \prod_p \left(1 + \frac{z}{p^s - 1}\right),$$
$$\sum_{n\geq 1} \frac{z^{\Omega(n)}}{n^s} = \prod_p \frac{1}{1 - \frac{z}{p^s}}.$$

Exercise 5. Prove that for a small enough constant *c* the following holds, uniformly on |t| > 1, $\sigma > 1 - \frac{c}{\log \tau}$ ($\tau = |t| + 4$):

$$\begin{split} & \frac{\zeta'}{\zeta}(s) \ll \log \tau, \\ & \log \zeta(s) \ll \log \log \tau + \mathcal{O}(1), \\ & \frac{1}{\zeta(s)} \ll \log \tau. \end{split}$$

Exercise 6. Let $\alpha(s) = \sum_{x} a_n n^{-s}$ be a Dirichlet series with abscissa of convergence σ_c , and $\operatorname{si}(x) = -\int_x^\infty \frac{\sin u}{u} du$. Prove the following quantitative version of Perron's formula: for any $\sigma_0 > \max\{0, \sigma_c\}$, uniformly in x > C, C large enough, we have

$$\sum_{n < x} a_n = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \alpha(s) \frac{x^s}{s} ds + R,$$

where

$$R = \frac{1}{\pi} \sum_{x/2 < n < x} a_n \operatorname{si}\left(T \log(x/n)\right) - \frac{1}{\pi} \sum_{x < n < 2x} a_n \operatorname{si}\left(T \log(n/x)\right) + O\left(\frac{x^{\sigma_0}}{T} \sum_{n \ge 1} \frac{|a_n|}{n^{\sigma_0}}\right)$$