Analytic number theory, homework 1.

Exercise 1. Let q be a positive integer. Show that if $\sigma>1$ then

$$
\sum_{n \geq 1, n \wedge q=1} n^{-s}=\zeta(s) \prod_{p \mid q}\left(1-p^{-s}\right)
$$

where the product is over primes dividing q.
Exercise 2. Let $G(s)=\sum p^{-s}$ be the prime zeta function. Prove that

$$
G(s)=\sum_{d=1}^{\infty} \frac{\mu(d)}{d} \log \zeta(d s)
$$

for any if $\sigma>1$. Show that G can be extended to $\sigma>0$, the extension having a countable number of (logarithmic) singularities on this domain.

Exercise 3. For a given $k \in \mathbb{N}^{*}$, let $\sigma_{k}(x)$ be the number of integers in $\llbracket 2, x \rrbracket$ such that $\Omega(n)=k$. Prove that

$$
\sigma_{k}(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)!\log x}
$$

as $x \rightarrow \infty$.
Exercise 4. Prove that, for any $|z|<2$ and $\sigma>1$,

$$
\begin{aligned}
& \sum_{n \geq 1} \frac{z^{\omega(n)}}{n^{s}}=\prod_{p}\left(1+\frac{z}{p^{s}-1}\right) \\
& \sum_{n \geq 1} \frac{z^{\Omega(n)}}{n^{s}}=\prod_{p} \frac{1}{1-\frac{z}{p^{s}}}
\end{aligned}
$$

Exercise 5. Prove that for a small enough constant c the following holds, uniformly on $|t|>1, \sigma>1-\frac{c}{\log \tau}(\tau=|t|+4)$:

$$
\begin{aligned}
& \frac{\zeta^{\prime}}{\zeta}(s) \ll \log \tau \\
& \log \zeta(s) \ll \log \log \tau+\mathrm{O}(1) \\
& \frac{1}{\zeta(s)} \ll \log \tau
\end{aligned}
$$

Exercise 6. Let $\alpha(s)=\sum a_{n} n^{-s}$ be a Dirichlet series with abscissa of convergence σ_{c}, and $\operatorname{si}(x)=-\int_{x}^{\infty} \frac{\sin u}{u} \mathrm{~d} u$. Prove the following quantitative version of Perron's formula: for any $\sigma_{0}>\max \left\{0, \sigma_{c}\right\}$, uniformly in $x>C, C$ large enough, we have

$$
\sum_{n<x} a_{n}=\frac{1}{2 \pi \mathrm{i}} \int_{\sigma_{0}-\mathrm{i} T}^{\sigma_{0}+\mathrm{i} T} \alpha(s) \frac{x^{s}}{s} \mathrm{~d} s+R
$$

where

$$
R=\frac{1}{\pi} \sum_{x / 2<n<x} a_{n} \operatorname{si}(T \log (x / n))-\frac{1}{\pi} \sum_{x<n<2 x} a_{n} \operatorname{si}(T \log (n / x))+\mathrm{O}\left(\frac{x^{\sigma_{0}}}{T} \sum_{n \geq 1} \frac{\left|a_{n}\right|}{n^{\sigma_{0}}}\right)
$$

