Analytic number theory, homework 4.

Exercise 1. Prove that, for each integer $n>0$, the number of primes smaller than x such that $p+2 n$ is prime is $\mathrm{O}_{n}\left(x /(\log x)^{2}\right)$. Prove that

$$
\sum_{p \in \mathcal{P}: p+2 \in \mathcal{P}}\left(\frac{1}{p}+\frac{1}{p+2}\right)<\infty
$$

Exercise 2. Prove that, for each $\sigma>1$,

$$
\begin{aligned}
\liminf _{t \rightarrow \infty}|\zeta(\sigma+i t)| & =\frac{\zeta(2 \sigma)}{\zeta(\sigma)} \\
\limsup _{t \rightarrow \infty}|\zeta(\sigma+i t)| & =\zeta(\sigma)
\end{aligned}
$$

Exercise 3. Let \mathcal{A} be a set of distinct real numbers and define, for any $\mu \in \mathcal{A}$, $\delta(\mu)=\inf _{\nu \neq \mu, \nu \in \mathcal{A}}|\nu-\mu|$. To complete the proof of the Montgomery-Vaughan inequality, prove that for any $k \in \mathbb{N}^{*}$,

$$
\begin{aligned}
& \sum_{\nu \in \mathcal{A}, \nu \neq \mu} \frac{\delta(\nu)}{(\mu-\nu)^{k}} \ll k \delta(\mu)^{1-k} . \\
& \quad \sum_{\nu \in \mathcal{A}, \nu \neq \mu_{1}, \nu \neq \mu_{2}} \frac{\delta(\nu)}{\left(\mu_{1}-\nu\right)^{2}\left(\mu_{2}-\nu\right)^{2}} \ll \frac{\delta\left(\mu_{1}\right)^{-1}+\delta\left(\mu_{2}\right)^{-1}}{\left(\mu_{1}-\mu_{2}\right)^{2}}, \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Exercise 4. Let χ be a character $\bmod q$. Find the asymptotics for

$$
\int_{0}^{t}\left|L_{\chi}\left(\frac{1}{2}+\mathrm{i} s\right)\right|^{2} \mathrm{~d} s
$$

How does the error term depend on q ?
Exercise 5. Prove that for any $\varepsilon>0$ there exists $x_{0}=x_{0}(\varepsilon)$ such that for any m and N coprime, for any $x>\max \left(N, x_{0}\right)$,

$$
|\{p \in \mathcal{P} \mid p \leq x, p=m(\bmod N)\}| \leq \frac{(2+\varepsilon) x}{\varphi(N) \log (2 x / N)}
$$

