Analytic number theory, homework 4.

Exercise 1. Prove that, for each integer n > 0, the number of primes smaller than
x such that p + 2n is prime is O,,(z/(log x)?). Prove that
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Exercise 2. Prove that, for each o > 1,
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Exercise 3. Let A be a set of distinct real numbers and define, for any p € A,
d(n) = infyz, pea v — p|l. To complete the proof of the Montgomery-Vaughan
inequality, prove that for any k € N*,
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Exercise 4. Let x be a character mod ¢. Find the asymptotics for
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How does the error term depend on ¢?

Exercise 5. Prove that for any € > 0 there exists x9 = z¢(g) such that for any m
and N coprime, for any x > max (N, zg),
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