Complex analysis, homework 1 plus 2, solutions.

Exercise 1.[12 points] Compute the following quantities. Show your steps.
(1) $(3-i)(-2+5 i)-3+2 i$
(2) $\frac{-3+2 i}{2-i}$
(3) $(1+i)^{3}$

Solution.

(1) $(3-i)(-2+5 i)-3+2 i=(-6+2 i+15 i+5)-3+2 i=-4+19 i$.
(2) $\frac{-3+2 i}{2-i}=\frac{-3+2 i}{2-i} \cdot \frac{2+i}{2+i}=\frac{-6-3 i+4 i-2}{2^{2}-i^{2}}=\frac{-8+i}{4+1}=-\frac{8}{5}+\frac{1}{5} i$.
(3) We can use the usual formula for the $(a+b)^{3}$: we have

$$
(1+i)^{3}=1^{3}+3 \cdot 1^{2} \cdot i+3 \cdot 1 \cdot i^{2}+i^{3}=1+3 i-3-i=-2+2 i
$$

Exercise 2. [4 points] Which of the points $z_{1}=3+6 i$ and $z_{2}=5-4 i$ is closer to the origin?
Solution. On the one hand, $\left|z_{1}\right|=\sqrt{3^{2}+6^{2}}=\sqrt{9+36}=\sqrt{45}$. On the other hand, $\left|z_{2}\right|=$ $\sqrt{5^{2}+(-4)^{2}}=\sqrt{25+16}=\sqrt{41}$. Therefore, $\left|z_{2}\right|<\left|z_{1}\right|$ so z_{2} is closer to the origin than z_{1}.
Exercise 3. [6 points]
(1) Show that, for any $z \in \mathbb{C}, z^{2}+1=(z-i)(z+i)$.
(2) Prove that the equation $z^{2}+1=0$ has exactly two solutions, which are i and $-i$.

Solution.

(1) Let $z \in \mathbb{C}$. Then, using the formula $(a-b)(a+b)=a^{2}-b^{2}$, we have $(z-i)(z+i)=z^{2}-i^{2}=$ $z^{2}+1$.
(2) Let $z \in \mathbb{C}$. Then

$$
z^{2}+1=0 \quad \Leftrightarrow \quad(z-i)(z+i)=0 \quad \Leftrightarrow\left\{\begin{array} { l }
{ z - i = 0 } \\
{ \text { or } } \\
{ z + i = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
z=i \\
\text { or } \\
z=-i
\end{array}\right.\right.
$$

Therefore, the equation $z^{2}+1=0$ has exactly two solutions, which are i and $-i$.
We used here in the second equivalence the following fact:
Fact: Let $z_{1}, z_{2} \in \mathbb{C}$. Then, $z_{1} z_{2}=0$ if and only if $z_{1}=0$ or $z_{2}=0$.
Note that we have already proved in class that if $z_{1} z_{2}=0$ then $z_{1}=0$ or $z_{2}=0$. The other direction of the statement is obvious.

Exercise 4. [4 points] Sketch the region in the complex plane $\{z \in \mathbb{C}:|z-2+i| \leq 3\}$, that is the set of all points z such that $|z-2+i| \leq 3$.

Solution. Note that $|z-2+i|=|z-(2-i)|$ is the distance between z and $2-i$. So the region $\{z \in \mathbb{C}:|z-2+i| \leq 3\}$ is the closed (that is including the boundary) disk centered at $2-i$ with radius 3 . The region is pictured in blue below.

Exercise 5. [4 points] Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be complex numbers. Express $\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)$ in terms of $x_{1}, x_{2}, y_{1}, y_{2}$. What does it represent for the vectors z_{1} and z_{2} ?

Solution. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be complex numbers. We have

$$
z_{1} \overline{z_{2}}=\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)=x_{1} x_{2}+i y_{1} x_{2}-x_{1} i y_{2}-i^{2} y_{1} y_{2}=\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(y_{1} x_{2}-x_{1} y_{2}\right)
$$

and therefore

$$
\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)=x_{1} x_{2}+y_{1} y_{2}
$$

This is the scalar product (or dot product) between the vectors z_{1} and z_{2}.
Exercise 6. [4 points] Let $z_{1}, z_{2} \in \mathbb{C}$ be in the upper left quarter plane (that is with negative real part and positive imaginary part). Prove that

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi
$$

Solution. Let $z_{1}, z_{2} \in \mathbb{C}$ be in the upper left quarter plane. Note that this implies that $\operatorname{Arg}\left(z_{1}\right) \in$ $\left(\frac{\pi}{2}, \pi\right)$ and $\operatorname{Arg}\left(z_{2}\right) \in\left(\frac{\pi}{2}, \pi\right)$. Moreover,

$$
z_{1} z_{2}=\left(\left|z_{1}\right| e^{i \operatorname{Arg}\left(z_{1}\right)}\right)\left(\left|z_{2}\right| e^{i \operatorname{Arg}\left(z_{2}\right)}\right)=\left(\left|z_{1}\right| \cdot\left|z_{2}\right|\right) e^{i\left(\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)\right)}=\left|z_{1} z_{2}\right| e^{i\left(\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi\right)}
$$

using $e^{-i 2 \pi}=1$ in the last equality. Therefore, $\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi$ is an argument of $z_{1} z_{2}$. But $\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) \in(\pi, 2 \pi)$, so $\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi \in(-\pi, 0)$ so in particular it is in $(-\pi, \pi]$. Hence $\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi$ is the principal argument of $z_{1} z_{2}$.

Exercise 7. [4 points] Let $w, z \in \mathbb{C}$ with $|w|=1$ and $z \neq w$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1
$$

Solution. Note that $w \bar{w}=|w|^{2}=1$. Therefore,

$$
\begin{array}{rlr}
|1-\bar{w} z| & =|1-\bar{w} z| \cdot|w| & \text { (using that }|w|=1) \\
& =|(1-\bar{w} z) w| & \text { (using that } \left.\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right) \\
& =|w-w \bar{w} z| & \\
& =|w-z| & \text { (using that } w \bar{w}=1)
\end{array}
$$

This implies in particular that $1-\bar{w} z \neq 0$, because $|w-z| \neq 0$ (since $w \neq z$). Therefore, the left-hand side in the equation we want to prove makes sense! Moreover, we have

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=\frac{|w-z|}{|1-\bar{w} z|}=\frac{|w-z|}{|w-z|}=1
$$

where we used the previous calculation in the second inequality.
Exercise 9. [4 points] Prove that for any z with modulus $R>1$, one has

$$
\left|\frac{z^{4}+\mathrm{i} z}{z^{2}+z+1}\right| \leq \frac{R^{4}+R}{(R-1)^{2}}
$$

Solution. We have
$\left|\frac{z^{4}+\mathrm{i} z}{z^{2}+z+1}\right|=\left|\frac{\left(z^{4}+\mathrm{i} z\right)(z-1)}{\left(z^{2}+z+1\right)(z-1)}\right|=\left|\frac{\left(z^{4}+\mathrm{i} z\right)(z-1)}{z^{3}-1}\right| \leq \frac{\left(R^{4}+R\right)(R+1)}{R^{3}-1}=\frac{\left(R^{4}+R\right)(R+1)}{\left(R^{2}+R+1\right)(R-1)} \leq \frac{R^{4}+R}{(R-1)^{2}}$,
where the last inequality is due to $R^{2}-1 \leq R^{2}+R+1$, obviouly correct.

