
Complex analysis, homework 1 plus 2, solutions.

Exercise 1.[12 points] Compute the following quantities. Show your steps.

(1) (3− i)(−2 + 5i)− 3 + 2i

(2)
−3 + 2i

2− i
(3) (1 + i)3

Solution.

(1) (3− i)(−2 + 5i)− 3 + 2i = (−6 + 2i+ 15i+ 5)− 3 + 2i = −4 + 19i.

(2)
−3 + 2i

2− i
=

−3 + 2i

2− i
· 2 + i

2 + i
=

−6− 3i+ 4i− 2

22 − i2
=

−8 + i

4 + 1
= −8

5
+

1

5
i.

(3) We can use the usual formula for the (a+ b)3: we have

(1 + i)3 = 13 + 3 · 12 · i+ 3 · 1 · i2 + i3 = 1 + 3i− 3− i = −2 + 2i.

Exercise 2. [4 points] Which of the points z1 = 3 + 6i and z2 = 5− 4i is closer to the origin?

Solution. On the one hand, |z1| =
√
32 + 62 =

√
9 + 36 =

√
45. On the other hand, |z2| =√

52 + (−4)2 =
√
25 + 16 =

√
41. Therefore, |z2| < |z1| so z2 is closer to the origin than z1.

Exercise 3. [6 points]

(1) Show that, for any z ∈ C, z2 + 1 = (z − i)(z + i).
(2) Prove that the equation z2 + 1 = 0 has exactly two solutions, which are i and −i.

Solution.

(1) Let z ∈ C. Then, using the formula (a− b)(a+ b) = a2 − b2, we have (z− i)(z+ i) = z2 − i2 =
z2 + 1.

(2) Let z ∈ C. Then

z2 + 1 = 0 ⇔ (z − i)(z + i) = 0 ⇔


z − i = 0

or
z + i = 0

⇔


z = i

or
z = −i.

Therefore, the equation z2 + 1 = 0 has exactly two solutions, which are i and −i.
We used here in the second equivalence the following fact:
Fact: Let z1, z2 ∈ C. Then, z1z2 = 0 if and only if z1 = 0 or z2 = 0.
Note that we have already proved in class that if z1z2 = 0 then z1 = 0 or z2 = 0. The other

direction of the statement is obvious.

Exercise 4. [4 points] Sketch the region in the complex plane {z ∈ C : |z− 2+ i| ≤ 3}, that is the set
of all points z such that |z − 2 + i| ≤ 3.

Solution. Note that |z − 2 + i| = |z − (2 − i)| is the distance between z and 2 − i. So the region
{z ∈ C : |z − 2 + i| ≤ 3} is the closed (that is including the boundary) disk centered at 2 − i with
radius 3. The region is pictured in blue below.
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1

i

2− i

Exercise 5. [4 points] Let z1 = x1 + iy1 and z2 = x2 + iy2 be complex numbers. Express Re(z1z2) in
terms of x1, x2, y1, y2. What does it represent for the vectors z1 and z2?

Solution. Let z1 = x1 + iy1 and z2 = x2 + iy2 be complex numbers. We have

z1z2 = (x1 + iy1)(x2 − iy2) = x1x2 + iy1x2 − x1iy2 − i2y1y2 = (x1x2 + y1y2) + i(y1x2 − x1y2)

and therefore
Re(z1z2) = x1x2 + y1y2.

This is the scalar product (or dot product) between the vectors z1 and z2.

Exercise 6. [4 points] Let z1, z2 ∈ C be in the upper left quarter plane (that is with negative real
part and positive imaginary part). Prove that

Arg(z1z2) = Arg(z1) + Arg(z2)− 2π.

Solution. Let z1, z2 ∈ C be in the upper left quarter plane. Note that this implies that Arg(z1) ∈
(π2 , π) and Arg(z2) ∈ (π2 , π). Moreover,

z1z2 = (|z1|eiArg(z1))(|z2|eiArg(z2)) = (|z1| · |z2|)ei(Arg(z1)+Arg(z2)) = |z1z2|ei(Arg(z1)+Arg(z2)−2π),

using e−i2π = 1 in the last equality. Therefore, Arg(z1) + Arg(z2) − 2π is an argument of z1z2. But
Arg(z1)+Arg(z2) ∈ (π, 2π), so Arg(z1)+Arg(z2)−2π ∈ (−π, 0) so in particular it is in (−π, π]. Hence
Arg(z1) + Arg(z2)− 2π is the principal argument of z1z2.

Exercise 7. [4 points] Let w, z ∈ C with |w| = 1 and z ̸= w. Prove that∣∣∣∣ w − z

1− wz

∣∣∣∣ = 1.

Solution. Note that ww = |w|2 = 1. Therefore,

|1− wz| = |1− wz| · |w| (using that |w| = 1)
= |(1− wz)w| (using that |z1z2| = |z1||z2|)
= |w − wwz|
= |w − z| (using that ww = 1)
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This implies in particular that 1−wz ̸= 0, because |w− z| ≠ 0 (since w ̸= z). Therefore, the left-hand
side in the equation we want to prove makes sense! Moreover, we have∣∣∣∣ w − z

1− wz

∣∣∣∣ = |w − z|
|1− wz|

=
|w − z|
|w − z|

= 1,

where we used the previous calculation in the second inequality.

Exercise 9. [4 points] Prove that for any z with modulus R > 1, one has∣∣∣∣ z4 + iz

z2 + z + 1

∣∣∣∣ ≤ R4 +R

(R− 1)2
.

Solution. We have∣∣∣∣ z4 + iz

z2 + z + 1

∣∣∣∣ = ∣∣∣∣ (z4 + iz)(z − 1)

(z2 + z + 1)(z − 1)

∣∣∣∣ = ∣∣∣∣ (z4 + iz)(z − 1)

z3 − 1

∣∣∣∣ ≤ (R4 +R)(R+ 1)

R3 − 1
=

(R4 +R)(R+ 1)

(R2 +R+ 1)(R− 1)
≤ R4 +R

(R− 1)2
,

where the last inequality is due to R2 − 1 ≤ R2 +R+ 1, obviouly correct.


