Complex analysis, homework 3 due February 8th.

Exercise 1.[4 points] Calculate $(-2+2 i)^{10}$. Give your result in the form $x+i y$ with x and y real numbers. Show you steps.
Remark: We have seen a method in class for this, do not expand directly $(-2+2 i)^{10}$.

Exercise 2.[6 points]

(1) Find the fourth roots of i. Give them in exponential forms and then represent them on a picture. Highlight the principal fourth root.
(2) Find the third roots of $-8+8 \sqrt{3} i$? Give them in exponential forms and then represent them on a picture. Highlight the principal third root.
Exercise 3. [4 points] We consider the following transformation $z \mapsto 2 e^{i \pi / 4}(z-1+i)$. Describe its effect on a point z of the complex plane in words (there should be three successive simple steps). Illustrate it with a picture in the case $z=2+i$ (that is represent z and $2 e^{i \pi / 4}(z-1+i)$, as well as the results of the successive steps described earlier).

Exercise 4. [4 points] Prove that $\lim _{z \rightarrow 1-i} \frac{2 z+1}{i z+1}$ exists and give its value in the form $x+i y$.

Exercise 5. [5 points] Let f be a function defined on \mathbb{C}. We say that f is Lipschitz on \mathbb{C} if there exists $K>0$ such that, for any $z, z^{\prime} \in \mathbb{C}$,

$$
\left|f(z)-f\left(z^{\prime}\right)\right| \leq K\left|z-z^{\prime}\right|
$$

Prove that, if f is Lipschitz on \mathbb{C}, then f has a limit at any point in \mathbb{C}.
Exercise 6. [5 points] Prove that $\lim _{z \rightarrow-1} \operatorname{Arg}(z)$ does not exist.
Exercise 7.[8 points] Let $z_{0} \in \mathbb{C}$. Prove or disprove the following statements:
(1) Let f and g be functions defined on a deleted neighborhood of z_{0}.

$$
\text { If } \lim _{z \rightarrow z_{0}} f(z)=\infty \text { and } \lim _{z \rightarrow z_{0}} g(z)=\infty \text {, then } \lim _{z \rightarrow z_{0}}(f(z)+g(z))=\infty
$$

(2) Let f and g be functions defined on a deleted neighborhood of z_{0}.

$$
\text { If } \lim _{z \rightarrow z_{0}} f(z)=\infty \text { and } \lim _{z \rightarrow z_{0}} g(z)=\infty \text {, then } \lim _{z \rightarrow z_{0}}(f(z) \times g(z))=\infty
$$

Remark: In order to disprove a result, you have to give a counterexample.

