Complex analysis, homework 3, solutions.

Exercise 1.[4 points] Calculate $(-2 + 2i)^{10}$. Give your result in the form x + iy with x and y real numbers. Show you steps.

Remark: We have seen a method in class for this, do not expand directly $(-2+2i)^{10}$.

Solution. Let z = -2 + 2i. Then $|z| = \sqrt{(-2)^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$. Then, we have

$$z = 2\sqrt{2}\left(-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = 2\sqrt{2}\left(\cos(3\pi/4) + i\sin(3\pi/4)\right) = 2\sqrt{2}e^{i3\pi/4}$$

Therefore,

$$(-2+2i)^{10} = \left(2\sqrt{2}e^{i3\pi/4}\right)^{10} = \left(2\sqrt{2}\right)^{10}e^{i10\cdot\frac{3\pi}{4}} = 2^{15}e^{i\frac{3\pi}{2}+2i\pi\cdot3} = 32768\cdot(-i) = -32768i.$$

Exercise 2.[6 points]

- (1) Find the fourth roots of i. Give them in exponential forms and then represent them on a picture. Highlight the principal fourth root.
- (2) Find the third roots of $-8 + 8\sqrt{3}i$? Give them in exponential forms and then represent them on a picture. Highlight the principal third root.

Solution.

(1) We have $i = e^{i\frac{\pi}{2}}$. So applying the result seen in class, we know that the fourth roots of i are

$$\exp\left(i\frac{\frac{\pi}{2}+0}{4}\right), \exp\left(i\frac{\frac{\pi}{2}+2\pi}{4}\right), \exp\left(i\frac{\frac{\pi}{2}+4\pi}{4}\right), \exp\left(i\frac{\frac{\pi}{2}+6\pi}{4}\right),$$

and they can be rewritten as

$$\exp\left(i\frac{\pi}{8}\right), \exp\left(i\frac{5\pi}{8}\right), \exp\left(i\frac{9\pi}{8}\right), \exp\left(i\frac{13\pi}{8}\right).$$

Since $\operatorname{Arg}(i) = \frac{\pi}{2}$, the principal fourth root is $e^{i \operatorname{Arg}(i)/4} = e^{i\pi/8}$.

(2) Let $z = -8 + 8\sqrt{3}i$. We have $|z| = \sqrt{(-8)^2 + (8\sqrt{3})^2} = \sqrt{8^2 + 3 \cdot 8^2} = \sqrt{4 \cdot 8^2} = 16$. Hence, we write

$$z = 16\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 16\exp\left(i\frac{2\pi}{3}\right).$$

So applying the result seen in class, we know that the third roots of z are

$$16^{1/3} \exp\left(i\frac{\frac{2\pi}{3}+0}{3}\right), 16^{1/3} \exp\left(i\frac{\frac{2\pi}{3}+2\pi}{3}\right), 16^{1/3} \exp\left(i\frac{\frac{2\pi}{3}+4\pi}{3}\right),$$

and they can be rewritten as

$$2\sqrt[3]{2}\exp\left(i\frac{2\pi}{9}\right), 2\sqrt[3]{2}\exp\left(i\frac{8\pi}{9}\right), 2\sqrt[3]{2}\exp\left(i\frac{14\pi}{9}\right).$$

Since $\operatorname{Arg}(z) = \frac{2\pi}{3}$, the principal third root is $|z|^{1/3}e^{i\operatorname{Arg}(z)/3} = 2\sqrt[3]{2}e^{2i\pi/9}$.

Exercise 3.[4 points] We consider the following transformation $z \mapsto 2e^{i\pi/4}(z-1+i)$. Describe its effect on a point z of the complex plane in words (there should be three successive simple steps). Illustrate it with a picture in the case z = 2 + i (that is represent z and $2e^{i\pi/4}(z-1+i)$, as well as the results of the successive steps described earlier).

Solution. The effects of the transformation are successively

- translation by the vector -1 + i;
- rotation centered at 0 with angle $\pi/4$;
- scaling centered at 0 with factor 2.

Note that the two last steps can be switched (product is commutative).

Exercise 4.[4 points] Prove that $\lim_{z \to 1-i} \frac{2z+1}{iz+1}$ exists and give its value in the form x + iy.

Solution. We want to prove

$$\lim_{z \to 1-i} \frac{2z+1}{iz+1} = \frac{2(1-i)+1}{i(1-i)+1},$$

which equals $\frac{8}{5} - \frac{1}{5}i$ by the previous calculation. Let $\varepsilon > 0$. We choose $\delta = \min(\varepsilon, \sqrt{5} - 1) > 0$. We set $z_0 = 1 - i$ and consider z such that $0 < |z - z_0| < \delta$, then we have

$$\begin{split} \left| \frac{2z+1}{iz+1} - \frac{2z_0+1}{iz_0+1} \right| &= \left| \frac{(2z+1)(iz_0+1) - (2z_0+1)(iz+1)}{(iz+1)(iz_0+1)} \right| \\ &= \left| \frac{2izz_0 + iz_0 + 2z + 1 - 2izz_0 - iz - 2z_0 - 1}{(iz+1)(iz_0+1)} \right| \\ &= \left| \frac{i(z_0-z) + 2(z-z_0)}{(iz+1)(iz_0+1)} \right| \\ &= \frac{|2+i| \cdot |z_0-z|}{|iz+1| \cdot |iz_0+1|} \\ &= \frac{|z_0-z|}{|iz+1|}, \end{split}$$

where in the last equality we used that $|iz_0+1| = |2+i|$, since $z_0 = 1-i$. We then use that $|z-z_0| < \delta$ to get

$$\left|\frac{2z+1}{iz+1}-\frac{2z_0+1}{iz_0+1}\right|<\frac{\delta}{|iz+1|}$$

On the other hand,

$$\begin{aligned} |iz+1| &= |iz_0 + 1 + i(z - z_0)| \\ &\geq |iz_0 + 1| - |i(z - z_0)| & \text{(triangle inequality)} \\ &= \sqrt{5} - |z - z_0| & \text{(}|iz_0 + 1| = |2 + i| = \sqrt{5}\text{)} \\ &> \sqrt{5} - \delta & \text{(}|z - z_0| < \delta\text{)} \\ &\geq 1 & \text{(}\delta \leq \sqrt{5} - 1\text{)}. \end{aligned}$$

Hence, we get

$$\left|\frac{2z+1}{iz+1} - \frac{2z_0+1}{iz_0+1}\right| < \delta \le \varepsilon.$$

This proves that

$$\lim_{z \to 1-i} \frac{2z+1}{iz+1} = \frac{2(1-i)+1}{i(1-i)+1} = \frac{4}{5} - \frac{7}{5}i$$

Exercise 5.[5 points] Let f be a function defined on \mathbb{C} . We say that f is Lipschitz on \mathbb{C} if there exists K > 0 such that, for any $z, z' \in \mathbb{C}$,

$$|f(z) - f(z')| \le K|z - z'|.$$

Prove that, if f is Lipschitz on \mathbb{C} , then f has a limit at any point in \mathbb{C} .

Solution. Let z_0 in \mathbb{C} , we will prove that f is continuous at z_0 . Let $\varepsilon > 0$. We set $\delta = \varepsilon/K > 0$ and consider consider z such that $|z - z_0| < \delta$. Then we have

$$|f(z) - f(z_0)| \le K|z - z_0| < K\delta = \varepsilon.$$

Therefore, $\lim_{z\to z_0} f(z) = f(z_0)$. This proves that f is continuous at z_0 and therefore on \mathbb{C} .

Exercise 6.[5 points] Prove that $\lim_{z \to -1} \operatorname{Arg}(z)$ does not exist.

Let's prove it properly. For the sake of contradiction, assume $\lim_{z\to -1} \operatorname{Arg}(z) = w$ for some $w \in \mathbb{C}$. Let $\varepsilon = \pi/2 > 0$. Then there is a $\delta > 0$ such that, for any z with $0 < |z+1| < \delta$, $|\operatorname{Arg}(z) - w| < \varepsilon = \pi/2$. Consider

$$z_1 = -1 + i\frac{\delta}{2}$$
 and $z_2 = -1 - i\frac{\delta}{2}$.

We have, for k = 1 or 2, $0 < |z_k + 1| < \delta$, so $|\operatorname{Arg}(z_k) - w| < \pi/2$. Hence, we get, using the triangle inequality,

$$|\operatorname{Arg}(z_1) - \operatorname{Arg}(z_2)| \le |\operatorname{Arg}(z_1) - w| + |w - \operatorname{Arg}(z_2)| < \pi.$$

But, on the other hand, we have $\operatorname{Arg}(z_1) \in (\pi/2, \pi]$ and $\operatorname{Arg}(z_2) = \in (-\pi, -\pi/2)$, so

$$|\operatorname{Arg}(z_1) - \operatorname{Arg}(z_2)| \ge \operatorname{Arg}(z_1) - \operatorname{Arg}(z_2) > \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) > \pi.$$

This is our contradiction.

Exercise 7.[8 points] Let $z_0 \in \mathbb{C}$. Prove or disprove the following statements:

(1) Let f and g be functions defined on a deleted neighborhood of z_0 .

If
$$\lim_{z \to z_0} f(z) = \infty$$
 and $\lim_{z \to z_0} g(z) = \infty$, then $\lim_{z \to z_0} (f(z) + g(z)) = \infty$.

(2) Let f and g be functions defined on a deleted neighborhood of z_0 .

If $\lim_{z \to z_0} f(z) = \infty$ and $\lim_{z \to z_0} g(z) = \infty$, then $\lim_{z \to z_0} (f(z) \times g(z)) = \infty$. Remark: In order to disprove a result, you have to give a counterexample.

Solution.

(1) This is false. Consider the functions

$$f(z) = \frac{1}{z - z_0}$$
 and $g(z) = \frac{1}{z_0 - z}$

defined for any $z \neq z_0$. Then, we have

$$\lim_{z \to z_0} f(z) = \infty \text{ and } \lim_{z \to z_0} g(z) = \infty,$$

as a consequence of the fact that $\lim_{z\to z_0} 1/f(z) = \lim_{z\to z_0} (z-z_0) = 0$ combined with the theorem seen in class for limits involving infinity (and similarly for g). But, on the other hand, f(z) + g(z) = 0 for any $z \neq z_0$, so we have

$$\lim_{z \to z_0} (f(z) + g(z)) = 0 \neq \infty.$$

(2) This is true. Let f and g be functions defined on a deleted neighborhood of z_0 such that

$$\lim_{z \to z_0} f(z) = \infty \text{ and } \lim_{z \to z_0} g(z) = \infty.$$

We want to prove that $\lim_{z\to z_0} f(z)g(z) = \infty$.

Approach 1 (using the definition): Let $\varepsilon > 0$. We have $\sqrt{\varepsilon} > 0$.

Since $\lim_{z\to z_0} f(z) = \infty$, there is a $\delta_1 > 0$ such that for any z with $|z - z_0| < \delta_1$, we have $|f(z)| > 1/\sqrt{\varepsilon}$.

Since $\lim_{z\to z_0} g(z) = \infty$, there is a $\delta_2 > 0$ such that for any z with $|z - z_0| < \delta_2$, we have $|g(z)| > 1/\sqrt{\varepsilon}$.

Let $\delta = \min(\delta_1, \delta_2) > 0$. Consider z such that $|z - z_0| < \delta$. Then we have $|f(z)| > 1/\sqrt{\varepsilon}$ and $|g(z)| > 1/\sqrt{\varepsilon}$. Hence,

$$|f(z)g(z)| = |f(z)| \cdot |g(z)| > \frac{1}{\sqrt{\varepsilon}} \cdot \frac{1}{\sqrt{\varepsilon}} = \frac{1}{\varepsilon}$$

This proves $\lim_{z\to z_0} f(z)g(z) = \infty$.

Approach 2 (using results): By the theorem concerning limits involving infinity, we have

$$\lim_{z \to z_0} \frac{1}{f(z)} = 0 \text{ and } \lim_{z \to z_0} \frac{1}{g(z)} = 0.$$

Therefore, using the result for products of limits (we can apply it to these finite limits!), we get

$$\lim_{z \to z_0} \frac{1}{f(z)g(z)} = \lim_{z \to z_0} \frac{1}{f(z)} \cdot \frac{1}{g(z)} = 0 \cdot 0 = 0.$$

Using again the theorem concerning limits involving infinity, this implies that $\lim_{z\to z_0} f(z)g(z) = \infty$.