Complex analysis, homework 3, solutions.

Exercise 1.[4 points] Calculate $(-2+2 i)^{10}$. Give your result in the form $x+i y$ with x and y real numbers. Show you steps.
Remark: We have seen a method in class for this, do not expand directly $(-2+2 i)^{10}$.
Solution. Let $z=-2+2 i$. Then $|z|=\sqrt{(-2)^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$. Then, we have

$$
z=2 \sqrt{2}\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=2 \sqrt{2}(\cos (3 \pi / 4)+i \sin (3 \pi / 4))=2 \sqrt{2} e^{i 3 \pi / 4}
$$

Therefore,

$$
(-2+2 i)^{10}=\left(2 \sqrt{2} e^{i 3 \pi / 4}\right)^{10}=(2 \sqrt{2})^{10} e^{i 10 \cdot \frac{3 \pi}{4}}=2^{15} e^{i \frac{3 \pi}{2}+2 i \pi \cdot 3}=32768 \cdot(-i)=-32768 i
$$

Exercise 2.[6 points]
(1) Find the fourth roots of i. Give them in exponential forms and then represent them on a picture. Highlight the principal fourth root.
(2) Find the third roots of $-8+8 \sqrt{3} i$? Give them in exponential forms and then represent them on a picture. Highlight the principal third root.

Solution.

(1) We have $i=e^{i \frac{\pi}{2}}$. So applying the result seen in class, we know that the fourth roots of i are

$$
\exp \left(i \frac{\frac{\pi}{2}+0}{4}\right), \exp \left(i \frac{\frac{\pi}{2}+2 \pi}{4}\right), \exp \left(i \frac{\frac{\pi}{2}+4 \pi}{4}\right), \exp \left(i \frac{\frac{\pi}{2}+6 \pi}{4}\right)
$$

and they can be rewritten as

$$
\exp \left(i \frac{\pi}{8}\right), \exp \left(i \frac{5 \pi}{8}\right), \exp \left(i \frac{9 \pi}{8}\right), \exp \left(i \frac{13 \pi}{8}\right)
$$

Since $\operatorname{Arg}(i)=\frac{\pi}{2}$, the principal fourth root is $e^{i \operatorname{Arg}(i) / 4}=e^{i \pi / 8}$.

(2) Let $z=-8+8 \sqrt{3} i$. We have $|z|=\sqrt{(-8)^{2}+(8 \sqrt{3})^{2}}=\sqrt{8^{2}+3 \cdot 8^{2}}=\sqrt{4 \cdot 8^{2}}=16$. Hence, we write

$$
z=16\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=16 \exp \left(i \frac{2 \pi}{3}\right) .
$$

So applying the result seen in class, we know that the third roots of z are

$$
16^{1 / 3} \exp \left(i \frac{\frac{2 \pi}{3}+0}{3}\right), 16^{1 / 3} \exp \left(i \frac{\frac{2 \pi}{3}+2 \pi}{3}\right), 16^{1 / 3} \exp \left(i \frac{\frac{2 \pi}{3}+4 \pi}{3}\right),
$$

and they can be rewritten as

$$
2 \sqrt[3]{2} \exp \left(i \frac{2 \pi}{9}\right), 2 \sqrt[3]{2} \exp \left(i \frac{8 \pi}{9}\right), 2 \sqrt[3]{2} \exp \left(i \frac{14 \pi}{9}\right)
$$

Since $\operatorname{Arg}(z)=\frac{2 \pi}{3}$, the principal third root is $|z|^{1 / 3} e^{i \operatorname{Arg}(z) / 3}=2 \sqrt[3]{2} e^{2 i \pi / 9}$.

Exercise 3.[4 points] We consider the following transformation $z \mapsto 2 e^{i \pi / 4}(z-1+i)$. Describe its effect on a point z of the complex plane in words (there should be three successive simple steps). Illustrate it with a picture in the case $z=2+i$ (that is represent z and $2 e^{i \pi / 4}(z-1+i)$, as well as the results of the successive steps described earlier).
Solution. The effects of the transformation are successively

- translation by the vector $-1+i$;
- rotation centered at 0 with angle $\pi / 4$;
- scaling centered at 0 with factor 2 .

Note that the two last steps can be switched (product is commutative).

Exercise 4.[4 points] Prove that $\lim _{z \rightarrow 1-i} \frac{2 z+1}{i z+1}$ exists and give its value in the form $x+i y$.

Solution. We want to prove

$$
\lim _{z \rightarrow 1-i} \frac{2 z+1}{i z+1}=\frac{2(1-i)+1}{i(1-i)+1}
$$

which equals $\frac{8}{5}-\frac{1}{5} i$ by the previous calculation. Let $\varepsilon>0$. We choose $\delta=\min (\varepsilon, \sqrt{5}-1)>0$. We set $z_{0}=1-i$ and consider z such that $0<\left|z-z_{0}\right|<\delta$, then we have

$$
\begin{aligned}
\left|\frac{2 z+1}{i z+1}-\frac{2 z_{0}+1}{i z_{0}+1}\right| & =\left|\frac{(2 z+1)\left(i z_{0}+1\right)-\left(2 z_{0}+1\right)(i z+1)}{(i z+1)\left(i z_{0}+1\right)}\right| \\
& =\left|\frac{2 i z z_{0}+i z_{0}+2 z+1-2 i z z_{0}-i z-2 z_{0}-1}{(i z+1)\left(i z_{0}+1\right)}\right| \\
& =\left|\frac{i\left(z_{0}-z\right)+2\left(z-z_{0}\right)}{(i z+1)\left(i z_{0}+1\right)}\right| \\
& =\frac{|2+i| \cdot\left|z_{0}-z\right|}{|i z+1| \cdot\left|i z_{0}+1\right|} \\
& =\frac{\left|z_{0}-z\right|}{|i z+1|}
\end{aligned}
$$

where in the last equality we used that $\left|i z_{0}+1\right|=|2+i|$, since $z_{0}=1-i$. We then use that $\left|z-z_{0}\right|<\delta$ to get

$$
\left|\frac{2 z+1}{i z+1}-\frac{2 z_{0}+1}{i z_{0}+1}\right|<\frac{\delta}{|i z+1|}
$$

On the other hand,

$$
\begin{array}{rlr}
|i z+1| & =\left|i z_{0}+1+i\left(z-z_{0}\right)\right| & \\
& \geq\left|i z_{0}+1\right|-\left|i\left(z-z_{0}\right)\right| & \text { (triangle inequality) } \\
& =\sqrt{5}-\left|z-z_{0}\right| & \left(\left|i z_{0}+1\right|=|2+i|=\sqrt{5}\right) \\
& >\sqrt{5}-\delta & \left(\left|z-z_{0}\right|<\delta\right) \\
& \geq 1 & (\delta \leq \sqrt{5}-1) .
\end{array}
$$

Hence, we get

$$
\left|\frac{2 z+1}{i z+1}-\frac{2 z_{0}+1}{i z_{0}+1}\right|<\delta \leq \varepsilon
$$

This proves that

$$
\lim _{z \rightarrow 1-i} \frac{2 z+1}{i z+1}=\frac{2(1-i)+1}{i(1-i)+1}=\frac{4}{5}-\frac{7}{5} i
$$

Exercise 5.[5 points] Let f be a function defined on \mathbb{C}. We say that f is Lipschitz on \mathbb{C} if there exists $K>0$ such that, for any $z, z^{\prime} \in \mathbb{C}$,

$$
\left|f(z)-f\left(z^{\prime}\right)\right| \leq K\left|z-z^{\prime}\right|
$$

Prove that, if f is Lipschitz on \mathbb{C}, then f has a limit at any point in \mathbb{C}.
Solution. Let z_{0} in \mathbb{C}, we will prove that f is continuous at z_{0}. Let $\varepsilon>0$. We set $\delta=\varepsilon / K>0$ and consider consider z such that $\left|z-z_{0}\right|<\delta$. Then we have

$$
\left|f(z)-f\left(z_{0}\right)\right| \leq K\left|z-z_{0}\right|<K \delta=\varepsilon
$$

Therefore, $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$. This proves that f is continuous at z_{0} and therefore on \mathbb{C}.

Exercise 6.[5 points] Prove that $\lim _{z \rightarrow-1} \operatorname{Arg}(z)$ does not exist.

Solution. Note that if $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z) \geq 0$, then $\operatorname{Arg}(z) \in(\pi / 2, \pi]$, and if $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z)<0$, then $\operatorname{Arg}(z) \in(-\pi,-\pi / 2)$. So $\operatorname{Arg}(z)$ takes values both in $(\pi / 2, \pi]$ and in $(-\pi,-\pi / 2)$ arbitrarily close to -1 so it cannot have a limit.

Let's prove it properly. For the sake of contradiction, assume $\lim _{z \rightarrow-1} \operatorname{Arg}(z)=w$ for some $w \in \mathbb{C}$. Let $\varepsilon=\pi / 2>0$. Then there is a $\delta>0$ such that, for any z with $0<|z+1|<\delta,|\operatorname{Arg}(z)-w|<\varepsilon=\pi / 2$. Consider

$$
z_{1}=-1+i \frac{\delta}{2} \quad \text { and } \quad z_{2}=-1-i \frac{\delta}{2}
$$

We have, for $k=1$ or $2,0<\left|z_{k}+1\right|<\delta$, so $\left|\operatorname{Arg}\left(z_{k}\right)-w\right|<\pi / 2$. Hence, we get, using the triangle inequality,

$$
\left|\operatorname{Arg}\left(z_{1}\right)-\operatorname{Arg}\left(z_{2}\right)\right| \leq\left|\operatorname{Arg}\left(z_{1}\right)-w\right|+\left|w-\operatorname{Arg}\left(z_{2}\right)\right|<\pi
$$

But, on the other hand, we have $\operatorname{Arg}\left(z_{1}\right) \in(\pi / 2, \pi]$ and $\operatorname{Arg}\left(z_{2}\right)=\in(-\pi,-\pi / 2)$, so

$$
\left|\operatorname{Arg}\left(z_{1}\right)-\operatorname{Arg}\left(z_{2}\right)\right| \geq \operatorname{Arg}\left(z_{1}\right)-\operatorname{Arg}\left(z_{2}\right)>\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)>\pi
$$

This is our contradiction.
Exercise 7. [8 points] Let $z_{0} \in \mathbb{C}$. Prove or disprove the following statements:
(1) Let f and g be functions defined on a deleted neighborhood of z_{0}.

$$
\text { If } \lim _{z \rightarrow z_{0}} f(z)=\infty \text { and } \lim _{z \rightarrow z_{0}} g(z)=\infty \text {, then } \lim _{z \rightarrow z_{0}}(f(z)+g(z))=\infty
$$

(2) Let f and g be functions defined on a deleted neighborhood of z_{0}.

If $\lim _{z \rightarrow} f(z)=\infty$ and $\lim _{i \rightarrow} g(z)=\infty$, then $\lim _{z \rightarrow}(f(z) \times g(z))=\infty$.
Remark: In order to ${ }^{z \rightarrow} \overrightarrow{z i}_{0}^{z}$ prove a result, you $\underset{z}{z}$ have to give a counterexample.

Solution.

(1) This is false. Consider the functions

$$
f(z)=\frac{1}{z-z_{0}} \quad \text { and } \quad g(z)=\frac{1}{z_{0}-z}
$$

defined for any $z \neq z_{0}$. Then, we have

$$
\lim _{z \rightarrow z_{0}} f(z)=\infty \text { and } \lim _{z \rightarrow z_{0}} g(z)=\infty
$$

as a consequence of the fact that $\lim _{z \rightarrow z_{0}} 1 / f(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)=0$ combined with the theorem seen in class for limits involving infinity (and similarly for g). But, on the other hand, $f(z)+g(z)=0$ for any $z \neq z_{0}$, so we have

$$
\lim _{z \rightarrow z_{0}}(f(z)+g(z))=0 \neq \infty
$$

(2) This is true. Let f and g be functions defined on a deleted neighborhood of z_{0} such that

$$
\lim _{z \rightarrow z_{0}} f(z)=\infty \text { and } \lim _{z \rightarrow z_{0}} g(z)=\infty
$$

We want to prove that $\lim _{z \rightarrow z_{0}} f(z) g(z)=\infty$.
Approach 1 (using the definition): Let $\varepsilon>0$. We have $\sqrt{\varepsilon}>0$.
Since $\lim _{z \rightarrow z_{0}} f(z)=\infty$, there is a $\delta_{1}>0$ such that for any z with $\left|z-z_{0}\right|<\delta_{1}$, we have $|f(z)|>1 / \sqrt{\varepsilon}$.

Since $\lim _{z \rightarrow z_{0}} g(z)=\infty$, there is a $\delta_{2}>0$ such that for any z with $\left|z-z_{0}\right|<\delta_{2}$, we have $|g(z)|>1 / \sqrt{\varepsilon}$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)>0$. Consider z such that $\left|z-z_{0}\right|<\delta$. Then we have $|f(z)|>1 / \sqrt{\varepsilon}$ and $|g(z)|>1 / \sqrt{\varepsilon}$. Hence,

$$
|f(z) g(z)|=|f(z)| \cdot|g(z)|>\frac{1}{\sqrt{\varepsilon}} \cdot \frac{1}{\sqrt{\varepsilon}}=\frac{1}{\varepsilon}
$$

This proves $\lim _{z \rightarrow z_{0}} f(z) g(z)=\infty$.

Approach 2 (using results): By the theorem concerning limits involving infinity, we have

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0 \text { and } \lim _{z \rightarrow z_{0}} \frac{1}{g(z)}=0
$$

Therefore, using the result for products of limits (we can apply it to these finite limits!), we get

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z) g(z)}=\lim _{z \rightarrow z_{0}} \frac{1}{f(z)} \cdot \frac{1}{g(z)}=0 \cdot 0=0
$$

Using again the theorem concerning limits involving infinity, this implies that $\lim _{z \rightarrow z_{0}} f(z) g(z)=$ ∞.

