Complex analysis, homework 4, solutions.

Exercise 1. For the following functions, say at which points they are differentiable and find their derivatives. Show your steps.

(1)
$$f(z) = \frac{z^2}{iz+1}$$

(2) $f(z) = z(z^2+iz)^5$

Solution.

(1) First note that f(z) is defined iff $iz + 1 \neq 0$, which is equivalent to $z \neq i$. For $z \neq i$, the numerator and the denominator are differentiable at z as polynomials and the denominator is non-zero, so by the quotient rule, f is differentiable at z and

$$f'(z) = \frac{2z(iz+1) - iz^2}{(iz+1)^2} = \frac{iz^2 + 2z}{(iz+1)^2}.$$

(2) The function f is a polynomial so it is differentiable everywhere. TUsing the product rule and then the chain rule, we get

$$f'(z) = (z^2 + iz)^5 + z \cdot \frac{\mathrm{d}}{\mathrm{d} z} (z^2 + iz)^5$$

= $(z^2 + iz)^5 + z \cdot (2z + i) \cdot 5(z^2 + iz)^4$
= $(z^2 + iz)^4 (z^2 + iz + 5z(2z + i))$
= $(z^2 + iz)^4 (11z + 6i)z.$

Exercise 2[5 points] Let $z_0 \in \mathbb{C}$. Let f be a function differentiable at z_0 . For any $z \in \mathbb{C}$ such that $f(\overline{z})$ is defined, we set

$$g(z) = \overline{f(\overline{z})}.$$

Prove that g is differentiable at $\overline{z_0}$ and express $g'(\overline{z_0})$ in terms of $f'(z_0)$.

Solution. For $h \in \mathbb{C}$ in a small enough neighborhood of 0, we have

$$\frac{g(\overline{z_0} + h) - g(\overline{z_0})}{h} = \frac{f(\overline{z_0} + \overline{h}) - \overline{f(\overline{z_0})}}{h} \qquad \text{(by definition of } g)$$

$$= \frac{\overline{f(z_0 + \overline{h}) - f(z_0)}}{\overline{\overline{h}}} \qquad \text{(using } \overline{\overline{z}} = z \text{ and } \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2})$$

$$= \overline{\left(\frac{f(z_0 + \overline{h}) - f(z_0)}{\overline{h}}\right)} \qquad \text{(using } \overline{z_1/z_2} = \overline{z_1}/\overline{z_2}).$$

We know that $\lim_{h\to 0} \overline{h} = 0$ and $\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = f'(z_0)$, so by composition of limits $\lim_{h\to 0} \frac{f(z_0+\overline{h})-f(z_0)}{\overline{h}} = f'(z_0)$. Moreover, using that the limit of the conjugate equals the conjugate of the limit, we get

$$\lim_{h \to 0} \frac{g(\overline{z_0} + h) - g(\overline{z_0})}{h} = \overline{f'(z_0)}.$$

So g is differentiable at $\overline{z_0}$ and $g'(\overline{z_0}) = \overline{f'(z_0)}$.

Exercise 3.[8 points] Let $f(z) = z \operatorname{Im}(z)$ for $z \in \mathbb{C}$. Find the points $z \in \mathbb{C}$ where f is differentiable and find its derivative f'(z) at these points. For all the other points in the complex plane, prove that

f is not differentiable at these points.

Solution. For any $z = x + iy \in \mathbb{C}$, we can write $f(z) = (x + iy)y = xy + iy^2 = u(x, y) + iv(x, y)$, with u(x, y) = xy and $v(x, y) = y^2$. The functions u and v have partial derivatives everywhere, which are

$$u_x(x,y) = y$$
 $u_y(x,y) = x$ $v_x(x,y) = 0$ $v_y(x,y) = 2y$

Hence, for $(x, y) \in \mathbb{R}^2$, we have

$$\begin{cases} u_x(x,y) = v_y(x,y) \\ u_y(x,y) = -v_x(x,y) \end{cases} \quad \Leftrightarrow \quad \begin{cases} y = 2y \\ x = 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} y = 0 \\ x = 0 \end{cases}$$

Hence, Cauchy-Riemann equations are only satisfied at (0,0). So for any $z \neq 0$, f is not differentiable at z.

We now want to prove f is differentiable at 0.

Approach 1 (most efficient): Since u and v have partial derivatives in a neighborhood of (0,0), they are all continuous at (0,0) and Cauchy-Riemann equations are satisfied at (0,0), by the theorem of Section 23, we get that f is differentiable at 0 and

$$f'(0) = u_x(0,0) + iv_x(0,0) = 0.$$

Approach 2 (using only results of past week): We use the definition of differentiability. For $h \in \mathbb{C}$,

$$\frac{f(0+h) - f(0)}{h} = \frac{h \operatorname{Im}(h) - 0}{h} = \operatorname{Im}(h)$$

Hence

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 0.$$

So f is differentiable at 0 and f'(0) = 0.

Exercise 4[9 points] Let f be a function differentiable on \mathbb{C} .

- (1) Prove that if $\operatorname{Re}(f)$ is constant on \mathbb{C} , then f is constant on \mathbb{C} .
- (2) Prove that if |f| is constant on \mathbb{C} , then f is constant on \mathbb{C} .

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function on \mathbb{R}^2 has its both partial derivatives that are zero on \mathbb{R}^2 , then this function is constant on \mathbb{R}^2 . For (b), you can start by squaring the modulus and differentiate either with respect to x or with respect to y.

Solution For both parts, we write f(z) = u(x, y) + iv(x, y) for any $z = x + iy \in \mathbb{C}$. Since f is differentiable on \mathbb{C} , u and v have partial derivatives on \mathbb{R}^2 and the Cauchy-Riemann equations are true: $u_x = v_y$ and $u_y = -v_x$.

- (1) We assume $\operatorname{Re}(f)$ is constant on \mathbb{C} , that is u is constant on \mathbb{R}^2 . Since u is constant, $u_x = 0$ and $u_y = 0$. It follows from the Cauchy-Riemann equations that $v_x = 0$ and $v_y = 0$. By the fact in the hint, we deduce that v is constant on \mathbb{R}^2 . Therefore f is constant on \mathbb{C} .
- (2) We assume |f| is constant on \mathbb{C} . Hence $|f|^2 = u^2 + v^2$ is also constant on \mathbb{C} . So differentiating with respect to x and with respect to y, we get

$$2u_x u + 2v_x v = 0$$
 and $2u_y u + 2v_y v = 0.$

Using the Cauchy-Riemann equations in the second equation, we get

$$\begin{cases} u_x u + v_x v = 0\\ -v_x u + u_x v = 0. \end{cases}$$
(0.1)

Multiplying the first equation by u and the second one by v and then summing them, we get

$$(u^2 + v^2)u_x = 0. (0.2)$$

If for some $(x, y) \in \mathbb{R}^2$, $u^2(x, y) + v^2(x, y) = 0$, then this means that |f(x + iy)| = 0, but |f| is constant on \mathbb{C} so for any $z' \in \mathbb{C}$, we have |f(z')| = 0 and therefore f(z') = 0. In particular f is constant on \mathbb{C} .