Complex analysis, homework 4, solutions.

Exercise 1. For the following functions, say at which points they are differentiable and find their derivatives. Show your steps.
(1) $f(z)=\frac{z^{2}}{i z+1}$
(2) $f(z)=z\left(z^{2}+i z\right)^{5}$

Solution.

(1) First note that $f(z)$ is defined iff $i z+1 \neq 0$, which is equivalent to $z \neq i$. For $z \neq i$, the numerator and the denominator are differentiable at z as polynomials and the denominator is non-zero, so by the quotient rule, f is differentiable at z and

$$
f^{\prime}(z)=\frac{2 z(i z+1)-i z^{2}}{(i z+1)^{2}}=\frac{i z^{2}+2 z}{(i z+1)^{2}}
$$

(2) The function f is a polynomial so it is differentiable everywhere. TUsing the product rule and then the chain rule, we get

$$
\begin{aligned}
f^{\prime}(z) & =\left(z^{2}+i z\right)^{5}+z \cdot \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{2}+i z\right)^{5} \\
& =\left(z^{2}+i z\right)^{5}+z \cdot(2 z+i) \cdot 5\left(z^{2}+i z\right)^{4} \\
& =\left(z^{2}+i z\right)^{4}\left(z^{2}+i z+5 z(2 z+i)\right) \\
& =\left(z^{2}+i z\right)^{4}(11 z+6 i) z .
\end{aligned}
$$

Exercise 2[5 points] Let $z_{0} \in \mathbb{C}$. Let f be a function differentiable at z_{0}. For any $z \in \mathbb{C}$ such that $f(\bar{z})$ is defined, we set

$$
g(z)=\overline{f(\bar{z})}
$$

Prove that g is differentiable at $\overline{z_{0}}$ and express $g^{\prime}\left(\overline{z_{0}}\right)$ in terms of $f^{\prime}\left(z_{0}\right)$.
Solution. For $h \in \mathbb{C}$ in a small enough neighborhood of 0 , we have

$$
\begin{array}{rlr}
\frac{g\left(\overline{z_{0}}+h\right)-g\left(\overline{z_{0}}\right)}{h} & =\frac{\overline{f\left(\overline{z_{0}+h}\right)}-\overline{f\left(\overline{z_{0}}\right)}}{h} & \quad \text { (by definition of } g \text {) } \\
& =\frac{\overline{f\left(z_{0}+\bar{h}\right)-f\left(z_{0}\right)}}{\overline{\bar{h}}} & \quad\left(\text { using } \overline{\bar{z}}=z \text { and } \overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}\right) \\
& =\overline{\left(\frac{f\left(z_{0}+\bar{h}\right)-f\left(z_{0}\right)}{\bar{h}}\right)} & \quad\left(\text { using } \overline{z_{1} / z_{2}}=\overline{z_{1}} / \overline{z_{2}}\right) .
\end{array}
$$

We know that $\lim _{h \rightarrow 0} \bar{h}=0$ and $\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=f^{\prime}\left(z_{0}\right)$, so by composition of $\operatorname{limits}^{\lim } \lim _{h \rightarrow 0} \frac{f\left(z_{0}+\bar{h}\right)-f\left(z_{0}\right)}{\bar{h}}=$ $f^{\prime}\left(z_{0}\right)$. Moreover, using that the limit of the conjugate equals the conjugate of the limit, we get

$$
\lim _{h \rightarrow 0} \frac{g\left(\overline{z_{0}}+h\right)-g\left(\overline{z_{0}}\right)}{h}=\overline{f^{\prime}\left(z_{0}\right)} .
$$

So g is differentiable at $\overline{z_{0}}$ and $g^{\prime}\left(\overline{z_{0}}\right)=\overline{f^{\prime}\left(z_{0}\right)}$.
Exercise 3. [8 points] Let $f(z)=z \operatorname{Im}(z)$ for $z \in \mathbb{C}$. Find the points $z \in \mathbb{C}$ where f is differentiable and find its derivative $f^{\prime}(z)$ at these points. For all the other points in the complex plane, prove that
f is not differentiable at these points.
Solution. For any $z=x+i y \in \mathbb{C}$, we can write $f(z)=(x+i y) y=x y+i y^{2}=u(x, y)+i v(x, y)$, with $u(x, y)=x y$ and $v(x, y)=y^{2}$. The functions u and v have partial derivatives everywhere, which are

$$
u_{x}(x, y)=y \quad u_{y}(x, y)=x \quad v_{x}(x, y)=0 \quad v_{y}(x, y)=2 y
$$

Hence, for $(x, y) \in \mathbb{R}^{2}$, we have

$$
\left\{\begin{array} { l }
{ u _ { x } (x , y) = v _ { y } (x , y) } \\
{ u _ { y } (x , y) = - v _ { x } (x , y) }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ y = 2 y } \\
{ x = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y=0 \\
x=0
\end{array}\right.\right.\right.
$$

Hence, Cauchy-Riemann equations are only satisfied at $(0,0)$. So for any $z \neq 0, f$ is not differentiable at z.

We now want to prove f is differentiable at 0 .
Approach 1 (most efficient): Since u and v have partial derivatives in a neighborhood of $(0,0)$, they are all continuous at $(0,0)$ and Cauchy-Riemann equations are satisfied at $(0,0)$, by the theorem of Section 23 , we get that f is differentiable at 0 and

$$
f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0 .
$$

Approach 2 (using only results of past week): We use the definition of differentiability. For $h \in \mathbb{C}$,

$$
\frac{f(0+h)-f(0)}{h}=\frac{h \operatorname{Im}(h)-0}{h}=\operatorname{Im}(h) .
$$

Hence

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=0
$$

So f is differentiable at 0 and $f^{\prime}(0)=0$.
Exercise $4[9$ points] Let f be a function differentiable on \mathbb{C}.
(1) Prove that if $\operatorname{Re}(f)$ is constant on \mathbb{C}, then f is constant on \mathbb{C}.
(2) Prove that if $|f|$ is constant on \mathbb{C}, then f is constant on \mathbb{C}.

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function on \mathbb{R}^{2} has its both partial derivatives that are zero on \mathbb{R}^{2}, then this function is constant on \mathbb{R}^{2}. For (b), you can start by squaring the modulus and differentiate either with respect to x or with respect to y.

Solution For both parts, we write $f(z)=u(x, y)+i v(x, y)$ for any $z=x+i y \in \mathbb{C}$. Since f is differentiable on \mathbb{C}, u and v have partial derivatives on \mathbb{R}^{2} and the Cauchy-Riemann equations are true: $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
(1) We assume $\operatorname{Re}(f)$ is constant on \mathbb{C}, that is u is constant on \mathbb{R}^{2}. Since u is constant, $u_{x}=0$ and $u_{y}=0$. It follows from the Cauchy-Riemann equations that $v_{x}=0$ and $v_{y}=0$. By the fact in the hint, we deduce that v is constant on \mathbb{R}^{2}. Therefore f is constant on \mathbb{C}.
(2) We assume $|f|$ is constant on \mathbb{C}. Hence $|f|^{2}=u^{2}+v^{2}$ is also constant on \mathbb{C}. So differentiating with respect to x and with respect to y, we get

$$
2 u_{x} u+2 v_{x} v=0 \quad \text { and } \quad 2 u_{y} u+2 v_{y} v=0
$$

Using the Cauchy-Riemann equations in the second equation, we get

$$
\left\{\begin{array}{l}
u_{x} u+v_{x} v=0 \tag{0.1}\\
-v_{x} u+u_{x} v=0
\end{array}\right.
$$

Multiplying the first equation by u and the second one by v and then summing them, we get

$$
\begin{equation*}
\left(u^{2}+v^{2}\right) u_{x}=0 \tag{0.2}
\end{equation*}
$$

If for some $(x, y) \in \mathbb{R}^{2}, u^{2}(x, y)+v^{2}(x, y)=0$, then this means that $|f(x+i y)|=0$, but $|f|$ is constant on \mathbb{C} so for any $z^{\prime} \in \mathbb{C}$, we have $\left|f\left(z^{\prime}\right)\right|=0$ and therefore $f\left(z^{\prime}\right)=0$. In particular f is constant on \mathbb{C}.

Otherwise $u^{2}+v^{2}$ does not vanish on \mathbb{R}^{2} so we can deduce from (0.2) that $u_{x}=0$ everywhere. But, back to (0.1), multiplying the first equation by v and the second one by u and then subtracting them, we get $\left(u^{2}+v^{2}\right) v_{x}=0$ which implies that $v_{x}=0$ everywhere. And using the Cauchy-Riemann equations, we also have $u_{y}=0$ and $v_{y}=0$. By the fact on the hint, we deduce that u and v are constant on \mathbb{R}^{2}. Therefore f is constant on \mathbb{C}.

