
Complex analysis, homework 4, solutions.

Exercise 1. For the following functions, say at which points they are differentiable and find their
derivatives. Show your steps.

(1) f(z) =
z2

iz + 1
(2) f(z) = z(z2 + iz)5

Solution.
(1) First note that f(z) is defined iff iz + 1 ̸= 0, which is equivalent to z ̸= i. For z ̸= i, the

numerator and the denominator are differentiable at z as polynomials and the denominator is
non-zero, so by the quotient rule, f is differentiable at z and

f ′(z) =
2z(iz + 1)− iz2

(iz + 1)2
=

iz2 + 2z

(iz + 1)2
.

(2) The function f is a polynomial so it is differentiable everywhere. TUsing the product rule and
then the chain rule, we get

f ′(z) = (z2 + iz)5 + z · d

d z
(z2 + iz)5

= (z2 + iz)5 + z · (2z + i) · 5(z2 + iz)4

= (z2 + iz)4(z2 + iz + 5z(2z + i))

= (z2 + iz)4(11z + 6i)z.

Exercise 2[5 points] Let z0 ∈ C. Let f be a function differentiable at z0. For any z ∈ C such that
f(z) is defined, we set

g(z) = f(z).

Prove that g is differentiable at z0 and express g′(z0) in terms of f ′(z0).

Solution. For h ∈ C in a small enough neighborhood of 0, we have

g(z0 + h)− g(z0)

h
=

f
(
z0 + h

)
− f

(
z0
)

h
(by definition of g)

=
f
(
z0 + h

)
− f(z0)

h
(using z = z and z1 ± z2 = z1 ± z2)

=

(
f
(
z0 + h

)
− f(z0)

h

)
(using z1/z2 = z1/z2).

We know that limh→0 h = 0 and limh→0
f(z0+h)−f(z0)

h = f ′(z0), so by composition of limits limh→0
f(z0+h)−f(z0)

h
=

f ′(z0). Moreover, using that the limit of the conjugate equals the conjugate of the limit, we get

lim
h→0

g(z0 + h)− g(z0)

h
= f ′(z0).

So g is differentiable at z0 and g′(z0) = f ′(z0).

Exercise 3.[8 points] Let f(z) = z Im(z) for z ∈ C. Find the points z ∈ C where f is differentiable
and find its derivative f ′(z) at these points. For all the other points in the complex plane, prove that
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f is not differentiable at these points.

Solution. For any z = x+ iy ∈ C, we can write f(z) = (x+ iy)y = xy+ iy2 = u(x, y) + iv(x, y), with
u(x, y) = xy and v(x, y) = y2. The functions u and v have partial derivatives everywhere, which are

ux(x, y) = y uy(x, y) = x vx(x, y) = 0 vy(x, y) = 2y.

Hence, for (x, y) ∈ R2, we have{
ux(x, y) = vy(x, y)

uy(x, y) = −vx(x, y)
⇔

{
y = 2y

x = 0
⇔

{
y = 0

x = 0

Hence, Cauchy-Riemann equations are only satisfied at (0, 0). So for any z ̸= 0, f is not differentiable
at z.

We now want to prove f is differentiable at 0.
Approach 1 (most efficient): Since u and v have partial derivatives in a neighborhood of (0, 0), they
are all continuous at (0, 0) and Cauchy-Riemann equations are satisfied at (0, 0), by the theorem of
Section 23, we get that f is differentiable at 0 and

f ′(0) = ux(0, 0) + ivx(0, 0) = 0.

Approach 2 (using only results of past week): We use the definition of differentiability. For h ∈ C,
f(0 + h)− f(0)

h
=

h Im(h)− 0

h
= Im(h).

Hence
lim
h→0

f(0 + h)− f(0)

h
= 0.

So f is differentiable at 0 and f ′(0) = 0.
Exercise 4[9 points] Let f be a function differentiable on C.

(1) Prove that if Re(f) is constant on C, then f is constant on C.
(2) Prove that if |f | is constant on C, then f is constant on C.

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function
on R2 has its both partial derivatives that are zero on R2, then this function is constant on R2. For
(b), you can start by squaring the modulus and differentiate either with respect to x or with respect to y.

Solution For both parts, we write f(z) = u(x, y) + iv(x, y) for any z = x + iy ∈ C. Since f is
differentiable on C, u and v have partial derivatives on R2 and the Cauchy-Riemann equations are
true: ux = vy and uy = −vx.

(1) We assume Re(f) is constant on C, that is u is constant on R2. Since u is constant, ux = 0
and uy = 0. It follows from the Cauchy-Riemann equations that vx = 0 and vy = 0. By the
fact in the hint, we deduce that v is constant on R2. Therefore f is constant on C.

(2) We assume |f | is constant on C. Hence |f |2 = u2+ v2 is also constant on C. So differentiating
with respect to x and with respect to y, we get

2uxu+ 2vxv = 0 and 2uyu+ 2vyv = 0.

Using the Cauchy-Riemann equations in the second equation, we get{
uxu+ vxv = 0

−vxu+ uxv = 0.
(0.1)

Multiplying the first equation by u and the second one by v and then summing them, we get

(u2 + v2)ux = 0. (0.2)

If for some (x, y) ∈ R2, u2(x, y) + v2(x, y) = 0, then this means that |f(x + iy)| = 0, but |f |
is constant on C so for any z′ ∈ C, we have |f(z′)| = 0 and therefore f(z′) = 0. In particular
f is constant on C.
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Otherwise u2+v2 does not vanish on R2 so we can deduce from (0.2) that ux = 0 everywhere.
But, back to (0.1), multiplying the first equation by v and the second one by u and then
subtracting them, we get (u2 + v2)vx = 0 which implies that vx = 0 everywhere. And using
the Cauchy-Riemann equations, we also have uy = 0 and vy = 0. By the fact on the hint, we
deduce that u and v are constant on R2. Therefore f is constant on C.


