
Complex analysis, homework 6, solutions

Exercise 1.[7 points] Calculate the following quantities:
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(1) By the definition of sin(z), we have
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(2) First note that
√
3−i = 2e−iπ

6 , where −π
6 is its principal argument. There-

fore,

log(
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Hence, we get
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using that e2 ln(2) = 4 and e4ikπ = 1. It can be written in x + iy form as
follows
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On the other hand, we have
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Exercise 2.[6 points] Evaluate the following integrals:
1



2

(1)

∫ 1

0

t(2 + it2)2 dt;

(2)

∫ π

0

cos(2t+ it) dt;

Solution.

(1) Note that d
dt (2 + it2)3 = 3(2 + it2)2 · 2it by chain rule. Hence we have∫ 1

0

t(2 + it2)2 dt =

[
1

6i
(2 + it2)3

]1
0

=
(2 + i)3 − 23

6i

=
23 + 3 · 22i+ 3 · 2 · i2 + i3 − 23

6i

=
12i− 6− i

6i
=

11i− 6

6i
=

11

6
+ i

(2) Note that cos(2t+ it) = cos((2 + i)t) = d
dt

1
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Then we evaluate
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Exercise 3.[3 points] Find the zeros of the function f defined by f(z) = cos(iz+1)
for z ∈ C.

Solution. Recall the zeros of cos are the kπ + π
2 for k ∈ Z. Let z ∈ C. We have

f(z) = 0 ⇔ cos(iz + 1) = 0

⇔ iz + 1 = kπ +
π

2
for some k ∈ Z

⇔ iz = kπ +
π

2
− 1 for some k ∈ Z

⇔ z = i
(
−kπ − π

2
+ 1
)

for some k ∈ Z,

using that 1
i = −i. We conclude that the set of zeros of f is{

i
(
−kπ − π

2
+ 1
)
: k ∈ Z

}
.

Exercise 4.[4 points] Solve the equation P.V. zi = −e.

Hint: Write Log z = a+ ib and first solve for a and b. Then recover z from a and b.
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Solution. Let z ∈ C∗ (note that the equation does not make sense if z ̸= 0). Write
Log z = a+ ib with a = ln|z| and b = Arg(z). We have

P.V. zi = −e ⇔ eiLog(z) = e1+iπ

⇔ e−b+ai = e1+iπ

⇔

{
b = −1

a = π + 2kπ, for some k ∈ Z,

where we use that −1 ∈ (−π, π], so b = −1 is allowed (otherwise there would be no
solution). Since z = ea+ib, we get the solutions to the equation are

eπ+2kπ−i, k ∈ Z.

which can also be written eπ+2kπ cos(1)− ieπ+2kπ sin(1), k ∈ Z.

Exercise 5.[5 points] Let I be a real interval and w : I → C be a function. Assume
w is differentiable at some t ∈ I. Prove |w|2 is differentiable at t and find its
derivative in terms of w(t) and w′(t).

Solution. We write w(s) = u(s) + iv(s) for s ∈ I. Since w is differentiable at t,
we know u and v are differentiable at t.

We first show that w is differentiable at t. For this, we simply note that w(s) =
u(s) + i(−v(s)) and u and −v are differentiable at t. Hence, w is differentiable at
t and

d

dt

(
w(t)

)
= u′(t)− iv′(t) = w′(t).

Now we recall that |w(s)|2 = w(s)w(s) for s ∈ I. Hence by the product rule, |w|2
is differentiable at t and

d

dt
(|w(t)|2) = w′(t)w(t) + w(t)

d

dt

(
w(t)

)
= w′(t)w(t) + w(t)w′(t).

This can also be written as

d

dt
(|w(t)|2) = w′(t)w(t) + w′(t)w(t) = 2Re(w′(t)w(t)).

using the formula z + z = 2Re(z).

Exercise 6.[5 points] Let α ∈ R. Consider the branch F of the log defined by

F (z) = ln r + iθ for z = reiθ with r > 0 and α < θ < α+ 2π.

Let D = {reiθ : r > 0 and α < θ < α + 2π}. Recall F is analytic on D and
F ′(z) = 1/z for any z ∈ D. Let c ∈ C. We define G(z) = ecF (z) for any z ∈ D.

(1) Explain why G is a branch of the power function zc on D, that is G is
analytic on D and, for any z ∈ D, G(z) is one of the values of zc.

(2) For any z ∈ D, show that G′(z) = ce(c−1)F (z).

Remark: The principal value of the power function is only an arbitrary choice (as
for the principal value of the log). Sometimes considering another one can be useful.
Note that here the derivative depends on the branch chosen, which is not the case
for the log.

Solution.

(1) We show G is a branch of the power function zc on D:
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• G is analytic on D by the chain rule: F is analytic on D, hence so is
cF and, since exp is analytic on C we get that ecF is analytic on D.

• Let z ∈ D. Then F (z) is one of the values of log(z). But zc = ec log(z),
that is the values of zc are all the ecw for w a value of log(z). Hence
G(z) = ecF (z) is one of the values of zc.

(2) Let z ∈ D, by the chain rule, we have

G′(z) = cF ′(z)ecF (z) =
c

z
ecF (z).

Now since F (z) is a value of log(z), this means that eF (z) = z (recall log(z)
is the set of complex numbers w solutions of ew = z). Hence we have

G′(z) =
c

eF (z)
ecF (z) = ce−F (z)ecF (z) = ce(c−1)F (z).


