Complex analysis, homework 7, solutions.

Exercise 1. [12 points] For each of the following arc C, sketch it and say if it is a simple arc, a simple closed curve, a smooth arc and/or a contour (that is for each one of the 4 previous properties, say if it holds or not). No justification required.
(1) Let C be the arc defined by

$$
z(t)= \begin{cases}2 t-i t & \text { if } 0 \leq t \leq 2 \\ 8-2 i-2 t & \text { if } 2 \leq t \leq 3 \\ 8-8 i+2(i-1) t & \text { if } 3 \leq t \leq 4\end{cases}
$$

(2) Let C be the arc defined by

$$
z(t)=t+i t^{2},-2 \leq t \leq 2
$$

(3) Let C be the arc defined by

$$
z(t)=1+e^{2 i t}, 0 \leq t \leq 2 \pi
$$

Solution.

(1) This arc is

- not a simple arc: first and last point are the same.
- a simple closed curve: not twice the same point except the first and last point which are the same.
- not a smooth arc: $z(t)$ is not differentiable at 2 and 3 (this can be annoying to justify). A simple way to justify the arc is not smooth is to show $z^{\prime}(t)$ is not continuous at 2 and at 3 (recall in order to be a differentiable arc, one needs both $z(t)$ is differentiable on $[a, b]$ and $z^{\prime}(t)$ is continuous on $\left.[a, b]\right)$: indeed we have

$$
z^{\prime}(t)= \begin{cases}2-i & \text { if } 0 \leq t \leq 2 \\ -2 & \text { if } 2 \leq t \leq 3 \\ 2(i-1) & \text { if } 3 \leq t \leq 4\end{cases}
$$

- a contour: it is a piecewise smooth arc, composed of the following three arcs

$$
\begin{aligned}
& z(t)=2 t-i t, \quad 0 \leq t \leq 2 \\
& z(t)=8-2 i-2 t, \quad 2 \leq t \leq 3 \\
& z(t)=8-8 i+2(i-1) t, \quad 3 \leq t \leq 4
\end{aligned}
$$

Each of these arcs is smooth: $z(t)$ is differentiable on the whole interval, $z^{\prime}(t)$ is continuous on the whole interval and $z^{\prime}(t) \neq 0$ on the interior of the interval (actually here on the whole interval).

(2) This arc is

- a simple arc: not twice the same point.
- not a simple closed curve: the first and last point which are different.
- a smooth arc: $z(t)$ is differentiable at any $t \in[-2,2]$ and

$$
z^{\prime}(t)=1+2 i t .
$$

Hence $z^{\prime}(t)$ is continuous at any $t \in[-2,2]$ and $z^{\prime}(t) \neq 0$ at any $t \in(-2,2)$.

- a contour: since it is smooth, it is in particular a contour.

(3) This arc is
- not a simple arc: this arc covers twice the circle centered at 1 with radius 1 (this can be sketched with double arrows, see below). Hence, it takes the same value twice so it is not simple.
- not a simple closed curve: first and last point are the same so it is a closed curve, but it takes other values twice so it is not a simple closed curve.
- a smooth arc: $z(t)$ is differentiable at any $t \in[0,2 \pi]$ and

$$
z^{\prime}(t)=2 i e^{2 i t} .
$$

Hence $z^{\prime}(t)$ is continuous at any $t \in[0,2 \pi]$ and $z^{\prime}(t) \neq 0$ at any $t \in(0,2 \pi)$.

- a contour: since it is smooth, it is in particular a contour.

Exercise 2. [6 points] Let C be the arc defined by

$$
z(t)= \begin{cases}e^{-i t} & \text { if } 0 \leq t \leq \pi \\ t-1-\pi & \text { if } \pi \leq t \leq \pi+2\end{cases}
$$

and $f(z)=2 \operatorname{Re}(z)$. Calculate the following integral

$$
\int_{C} f(z) \mathrm{d} z
$$

Solution. We use the definition of contour integrals

$$
\begin{aligned}
\int_{C} f(z) \mathrm{d} z & =\int_{0}^{\pi+2} f(z(t)) z^{\prime}(t) \mathrm{d} t \\
& =\int_{0}^{\pi} f\left(e^{-i t}\right) \cdot\left(-i e^{-i t}\right) \mathrm{d} t+\int_{\pi}^{\pi+2} f(t-1-\pi) \cdot 1 \mathrm{~d} t \\
& =\int_{0}^{\pi} 2 \cos (-t) \cdot\left(-i e^{-i t}\right) \mathrm{d} t+\int_{\pi}^{\pi+2} 2(t-1-\pi) \mathrm{d} t
\end{aligned}
$$

using $f(z)=2 \operatorname{Re}(z)$. For the first part, we use that $\cos (-t)=\cos t=\frac{e^{i t}+e^{-i t}}{2}$ to get

$$
\begin{aligned}
\int_{0}^{\pi} 2 \cos (-t) \cdot\left(-i e^{-i t}\right) \mathrm{d} t & =-i \int_{0}^{\pi}\left(e^{i t}+e^{-i t}\right) e^{-i t} \mathrm{~d} t=-i \int_{0}^{\pi}\left(1+e^{-2 i t}\right) \mathrm{d} t \\
& =-i\left[t+\frac{e^{-2 i t}}{-2 i}\right]_{0}^{\pi}=-i\left(\pi+\frac{1}{-2 i}-0-\frac{1}{-2 i}\right)=-i \pi
\end{aligned}
$$

For the other part, we set $s=t-1-\pi$ and get

$$
\int_{\pi}^{\pi+2} 2(t-1-\pi) \mathrm{d} t=\int_{-1}^{1} 2 s \mathrm{~d} s=0
$$

So finally

$$
\int_{C} f(z) \mathrm{d} z=-i \pi
$$

Exercise 3. [6 points] Let C be the contour defined by $z(\theta)=e^{i \theta}, \frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$. Calculate the following integral

$$
\int_{C} \log (z) \mathrm{d} z
$$

4
Solution. We use the definition of contour integrals

$$
\int_{C} f(z) \mathrm{d} z=\int_{\pi / 2}^{3 \pi / 2} \log \left(e^{i \theta}\right) \cdot i e^{i \theta} \mathrm{~d} \theta
$$

Now note that

$$
\log \left(e^{i \theta}\right)=\ln \left|e^{i \theta}\right|+i \operatorname{Arg}\left(e^{i \theta}\right)= \begin{cases}i \theta & \text { if } \frac{\pi}{2} \leq \theta \leq \pi \\ i(\theta-2 \pi) & \text { if } \pi<\theta \leq \frac{3 \pi}{2}\end{cases}
$$

Therefore, we get

$$
\begin{aligned}
\int_{C} f(z) \mathrm{d} z & =\int_{\pi / 2}^{\pi} i \theta \cdot i e^{i \theta} \mathrm{~d} \theta+\int_{\pi}^{3 \pi / 2} i(\theta-2 \pi) \cdot i e^{i \theta} \mathrm{~d} \theta \\
& =-\int_{\pi / 2}^{3 \pi / 2} \theta e^{i \theta} \mathrm{~d} \theta+2 \pi \int_{\pi}^{3 \pi / 2} e^{i \theta} \mathrm{~d} \theta
\end{aligned}
$$

For the second term, we have

$$
\left.2 \pi \int_{\pi}^{3 \pi / 2} e^{i \theta} \mathrm{~d} \theta=\frac{2 \pi}{i} \cdot\left[e^{i \theta}\right]_{\pi}^{3 \pi / 2}=-2 i \pi(-i-(-1))\right)=-2 \pi-2 i \pi
$$

On the other hand, for the first term, integrating by part (we integrate $e^{i \theta}$ and differentiate θ),

$$
\begin{aligned}
\int_{\pi / 2}^{3 \pi / 2} \theta e^{i \theta} \mathrm{~d} \theta & =\left[\theta \frac{e^{i \theta}}{i}\right]_{\pi / 2}^{3 \pi / 2}-\int_{\pi / 2}^{3 \pi / 2} \frac{e^{i \theta}}{i} \mathrm{~d} \theta=\left(\frac{3 \pi}{2} \frac{e^{3 i \pi / 2}}{i}-\frac{\pi}{2} \frac{e^{i \pi / 2}}{i}\right)+\int_{\pi / 2}^{3 \pi / 2} i e^{i \theta} \mathrm{~d} \theta \\
& =\left(-\frac{3 \pi}{2}-\frac{\pi}{2}\right)+\left[e^{i \theta}\right]_{\pi / 2}^{3 \pi / 2}=-2 \pi+(-i-i)=-2 \pi-2 i
\end{aligned}
$$

Therefore, we get

$$
\int_{C} f(z) \mathrm{d} z=2 \pi+2 i-2 \pi-2 i \pi=i \cdot 2(1-\pi)
$$

Exercise 4. [6 points] Let C be the following arc (upper half circle centered at 0 with radius 3):

Prove the following bound

$$
\left|\int_{C} \frac{z^{2}-i z+2}{z+2} \mathrm{~d} z\right| \leq 42 \pi
$$

Solution. The length of C is $\frac{1}{2} \cdot 2 \pi 3=3 \pi$. Then, using the triangle inequality, we get, for any z on C,

$$
\left|z^{2}-i z+2\right| \leq\left|z^{2}\right|+|-i z|+|2|=|z|^{2}+|z|+2=9+3+2=14
$$

using $|z|=3$, and moreover

$$
|z+2| \geq|z|-2=3-2=1
$$

Hence we get, for any z on C,

$$
\left|\frac{z^{2}-i z+2}{z+2}\right|=\frac{\left|z^{2}-i z+2\right|}{|z+2|} \leq \frac{14}{1}=14 .
$$

Finally, the theorem of Section 47 yields

$$
\left|\int_{C} \frac{z^{2}-i z+2}{z+2} \mathrm{~d} z\right| \leq 14 \cdot 3 \pi=42 \pi .
$$

