Dynamical Systems, homework 3.

Exercise 1. Describe the dynamics of the linear maps given by the following matrices:

$$\left(\begin{array}{cc} 2 & 0\\ 0 & 1/2 \end{array}\right), \ \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & \frac{1}{3} \end{array}\right).$$

Exercise 2. Calculate the Lyapunov exponent, at a given point x, for the linear maps given by the following matrices:

$$\left(\begin{array}{rrr} 1 & 1 \\ 1 & 1/2 \end{array}\right), \ \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

What are the fixed points, and are they stable?

Exercise 3. Assume $f: X \to X$ and $g: Y \to Y$ are topologically conjugate via $h: X \to Y$ (here X and Y are complete metric spaces and h is an homeomorphism). Show the following assertions.

a) If p is a periodic point of f of prime period n, h(p) is a periodic point of g of prime period n. If p is eventually periodic for f, h(p) is eventually periodic for g.

b) If p is an attracting periodic point¹ for f with stable set W(p), then h(p) is attracting periodic for g with stable set h(W(p)).

c) If p is a repelling periodic point² for f, then h(p) is a repelling periodic point for g.

d) If f has a dense orbit, g has a dense orbit.

Exercise 4. A continuous function $f : [0,1] \to [0,1]$ is called unimodal if:

- (1) f has a unique maximum point $c \in (0, 1)$ with f(c) = 1;
- (2) f is strictly increasing on [0, c] and strictly decreasing on [c, 1];
- (3) f(0) = f(1) = 0.

Prove that such a function has a least 2^n periodic points with prime period n in [0,1].

Exercise 5. Prove that an orientation reversing diffeomorphism of the circle must have two fixed points.

Exercise 6. Assume that f is a smooth function such that S(f) < 0 for any $x \in \mathbb{R}$, p is a one-sided attracting periodic point, and W(p) is the maximal stable interval containing p. Assume that W(p) is bounded. Show that for some i, there is a critical point of f in $W(f^{\circ i}(p))$

¹This means that for some $n \in \mathbb{N}$, prime period of p, and some open neighborhood X of p, $f^{\circ kn}(x) \to p$ as $k \to \infty$ for any $x \in X$.

²This means that for some $n \in \mathbb{N}$, prime period of p, and some $\epsilon > 0$, in any open neighborhood X of p there exists an $x \in X$ and $k \in \mathbb{N}$ such that $d(f^{\circ kn}(x), p) > \epsilon$.