Probability, homework 1.

Exercise 1. Let $\left(\mathcal{G}_{\alpha}\right)_{\alpha \in A}$ be an arbitrary family of σ-algebras defined on an abstract space Ω. Show that $\cap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ-algebra.

Exercise 2. Let \mathcal{A} be a σ-algebra. Prove that if, for all $n \in \mathbb{N}, A_{n} \in \mathcal{A}$, then $\limsup _{n \rightarrow \infty} A_{n}$ and $\liminf \operatorname{inc\infty }_{n \rightarrow} A_{n}$ are in \mathcal{A}.

Exercise 3. Prove the Bonferroni inequalities: if $A_{i} \in \mathcal{A}$ is a sequence of events, then
(i) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)$,
(ii) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)$.

Exercise 4. Let $\left(s_{n}\right)_{n \geq 0}$ be a 1-dimensional, unbiased random walk. For $a \in \mathbb{Z}^{*}$, let $T_{a}=\inf \left\{n \geq 0: s_{n}=a\right\}$. Prove that $\mathbb{E}\left(T_{a}\right)=\infty$.

Exercise 5. Let $\left(s_{n}\right)_{n \geq 0}$ be a 1-dimensional, unbiased random walk. Prove that $\mathbb{P}\left(\limsup \sup _{n \rightarrow \infty} \frac{s_{n}}{\sqrt{n}}=\infty\right)=1$.

Exercise 6. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N) ? Prove that $\mathbb{P}(n \wedge m=1) \underset{N \rightarrow \infty}{\longrightarrow} \zeta(2)^{-1}$ where $\zeta(2)=\prod_{p \in \mathcal{P}}\left(1-p^{-2}\right)^{-1}=\sum_{n \geq 1} n^{-2}=\frac{\pi^{2}}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m=1$ means that their greatest common divisor is 1 .

