Probability, homework 1.

Exercise 1. Let $(\mathcal{G}_{\alpha})_{\alpha \in A}$ be an arbitrary family of σ -algebras defined on an abstract space Ω . Show that $\bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ -algebra.

Exercise 2. Let \mathcal{A} be a σ -algebra. Prove that if, for all $n \in \mathbb{N}$, $A_n \in \mathcal{A}$, then $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ are in \mathcal{A} .

Exercise 3. Prove the Bonferroni inequalities: if $A_i \in \mathcal{A}$ is a sequence of events, then

(i) $\mathbb{P}(\bigcup_{i=1}^{n}A_i) \geq \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j),$ (ii) $\mathbb{P}(\bigcup_{i=1}^{n}A_i) \leq \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k).$

Exercise 4. Let $(s_n)_{n\geq 0}$ be a 1-dimensional, unbiased random walk. For $a \in \mathbb{Z}^*$, let $T_a = \inf\{n \geq 0 : s_n = a\}$. Prove that $\mathbb{E}(T_a) = \infty$.

Exercise 5. Let $(s_n)_{n\geq 0}$ be a 1-dimensional, unbiased random walk. Prove that $\mathbb{P}\left(\limsup_{n\to\infty}\frac{s_n}{\sqrt{n}}=\infty\right)=1.$

Exercise 6. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N)? Prove that $\mathbb{P}(n \wedge m = 1) \xrightarrow[N \to \infty]{} \zeta(2)^{-1}$ where $\zeta(2) = \prod_{p \in \mathcal{P}} (1 - p^{-2})^{-1} = \sum_{n \ge 1} n^{-2} = \frac{\pi^2}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m = 1$ means that their greatest common divisor is 1.