Probability, homework 3.

Exercise 1. Let X be a nonnegative random variable with null expectation. Prove that it is 0 almost surely.

Exercise 2. Let X be a random variable in $\mathcal{L}^{1}(\Omega, \mathcal{A}, \mathbb{P})$. Let $\left(A_{n}\right)_{n \geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}\left(A_{N}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Prove that $\mathbb{E}\left(X \mathbb{1}_{A_{n}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$.

Exercise 3. Let X be a Gaussian random variable with expectation 0 and variance σ^{2}. What is $\mathbb{E}\left(X^{3}\right)$? What is $\mathbb{E}\left(X^{4}\right)$?

Exercise 4. Let (X, Y) be chosen uniformly on the triangle $\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq\right.$ $1, x \geq 0, y \geq 0\}$. What is the density function of (X, Y) ? Find the distributions of $X+Y, X-Y, X Y$.

Exercise 5. A samouraï wants to create a triangle with a (rigid) spaghetti. With his saber, he cuts this spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

Exercise 6. Assume that X_{1}, X_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$. Let $Y^{(n)}=n \inf \left\{X_{i}, 1 \leq i \leq n\right\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(f\left(Y^{(n)}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{+}} f(u) e^{-u} \mathrm{~d} u
$$

