Probability, homework 5.

Exercise 1. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 2. In the (O, x, y) plane, a random ray emerges from a light source at point $(-1,0)$, towards the (O, y) axis. The angle with the (O, x) axis is uniform on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What is the distribution of the impact point with the (O, y) axis?

Exercise 3. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

Exercise 4. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right) .
$$

a) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
b) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 5. The problem of the collector. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_{n}=\inf \{m \geq$ $\left.1:\left\{X_{1}, \ldots, X_{m}\right\}=\{1, \ldots, n\}\right\}$ be the first time for which all values have been observed.
a) Let $\tau_{n}^{(k)}=\inf \left\{m \geq 1:\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|=k\right\}$. Prove that the random variables $\left(\tau_{n}^{(k)}-\tau_{n}^{(k-1)}\right)_{2 \leq k \leq n}$ are independent and calculate their respective distributions.
b) Deduce that $\frac{\tau_{n}}{n \log n} \rightarrow 1$ in probability as $n \rightarrow \infty$, i.e. for any $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{\tau_{n}}{n \log n}-1\right|>\varepsilon\right) \rightarrow 0
$$

Exercise 6. For any $d \geq 1$, we admit that there is only one probability measure μ on \mathcal{S}_{d}, (the ($d-1$)-th dimensional sphere embedded in \mathbb{R}^{d}) that is uniform, in the following sense: for any isometry $A \in \mathrm{O}(d)$ (the orthogonal group in \mathbb{R}^{d}), and any continuous function $f: \mathcal{S}_{d} \rightarrow \mathbb{R}$,

$$
\int_{\mathcal{S}_{d}} f(x) \mathrm{d} \mu(x)=\int_{\mathcal{S}_{d}} f(A x) \mathrm{d} \mu(x) .
$$

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a vector of independent centered and reduced Gaussian random variables.
a) Prove that the random variable $U=X /\|X\|_{L^{2}}$ is uniformly distributed on the sphere.
b) Prove that, as $d \rightarrow \infty$, the main part of the globe is concentrated close to the Equator, i.e. for any $\varepsilon>0$,

$$
\int_{x \in \mathcal{S}_{d},\left|x_{1}\right|<\epsilon} \mathrm{d} \mu(x) \rightarrow 1 .
$$

