Probability, homework 5.

Exercise 1. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 2. In the (O, x, y) plane, a random ray emerges from a light source at point (-1, 0), towards the (O, y) axis. The angle with the (O, x) axis is uniform on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What is the distribution of the impact point with the (O, y) axis?

Exercise 3. Let f be a continuous function on [0, 1]. Calculate the asymptotics, as $n \to \infty$, of

$$\int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n.$$

Exercise 4. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R} , can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

a) Let $S_n(x) = B^{(n,x)}/n$, where $B^{(n,x)}$ is a binomial random variable with parameters n and x: $B^{(n,x)} = \sum_{\ell=1}^{n} X_i$ where the X_i 's are independent and $\mathbb{P}(X_i = 1) = x$, $\mathbb{P}(X_i = 0) = 1 - x$. Prove that $B_n(x) = \mathbb{E}(f(S_n(x)))$.

b) Prove that $||B_n - f||_{L^{\infty}([0,1])} \to 0$ as $n \to \infty$.

Exercise 5. The problem of the collector. Let $(X_k)_{k\geq 1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_n = \inf\{m \geq 1 : \{X_1, \ldots, X_m\} = \{1, \ldots, n\}$ be the first time for which all values have been observed.

a) Let $\tau_n^{(k)} = \inf\{m \ge 1 : |\{X_1, \dots, X_m\}| = k\}$. Prove that the random variables $(\tau_n^{(k)} - \tau_n^{(k-1)})_{2 \le k \le n}$ are independent and calculate their respective distributions. b) Deduce that $\frac{\tau_n}{n \log n} \to 1$ in probability as $n \to \infty$, i.e. for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{\tau_n}{n\log n} - 1\right| > \varepsilon\right) \to 0.$$

Exercise 6. For any $d \ge 1$, we admit that there is only one probability measure μ on \mathcal{S}_d , (the (d-1)-th dimensional sphere embedded in \mathbb{R}^d) that is uniform, in the following sense: for any isometry $A \in O(d)$ (the orthogonal group in \mathbb{R}^d), and any continuous function $f : \mathcal{S}_d \to \mathbb{R}$,

$$\int_{\mathcal{S}_d} f(x) \mathrm{d}\mu(x) = \int_{\mathcal{S}_d} f(Ax) \mathrm{d}\mu(x).$$

Let $X = (X_1, \ldots, X_d)$ be a vector of independent centered and reduced Gaussian random variables.

a) Prove that the random variable $U=X/\|X\|_{L^2}$ is uniformly distributed on the sphere.

b) Prove that, as $d \to \infty$, the main part of the globe is concentrated close to the Equator, i.e. for any $\varepsilon > 0$,

$$\int_{x \in \mathcal{S}_d, |x_1| < \epsilon} \mathrm{d}\mu(x) \to 1.$$