Probability, homework 6.

Exercise 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be such that Ω is countable and $\mathcal{A}=2^{\Omega}$. Prove that almost sure convergence and convergence in probability are the same on this probability space.

Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables, with respective distributions being Gaussian, with respective mean $\mu_{n} \in \mathbb{R}$ and variance $\sigma_{n}^{2}>0$. Prove that if X_{n} converges in distribution, then μ_{n} and σ_{n}^{2} need to converge, and identify the limiting random variable.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. real random variables, with $\mathbb{E}\left(X_{1}\right)=0, \operatorname{var}\left(X_{1}\right)=1$. Let $S_{n}=X_{1}+\cdots+X_{n}$.
a) Prove that for any $A>0, \mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n}}>A\right)>0$.
b) Prove that $\left\{\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n}}>A\right\} \in \cap_{n \geq 1} \sigma\left(X_{i}, i \geq n\right)$.
c) Deduce that $\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n}}=+\infty\right)=1$.
d) Prove that for any subsequence $\left(n_{k}\right)_{k \geq 1}, \mathbb{P}\left(\lim \sup _{k \rightarrow \infty} \frac{S_{n_{k}}}{\sqrt{n_{k}}}=+\infty\right)=1$.
e) Prove that $\left(\frac{S_{n}}{\sqrt{n}}\right)_{n \geq 1}$ does not converge in probability.

Exercise 4 Central value of the partial exponential function. Calculate

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}
$$

Hint: this is a probability related to a sum of independent Poisson random variables with parameter 1 .

Exercise 5 The number of buses stopping till time t. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d random variables on $(\Omega, \mathcal{A}, \mathbb{P}), X_{1}$ being an exponential random variable with parameter 1. Define $T_{0}=0, T_{n}=X_{1}+\cdots+X_{n}$, and for any $t>0$,

$$
N_{t}=\max \left\{n \geq 0 \mid T_{n} \leq t\right\}
$$

a) For any $n \geq 1$, calculate the joint distribution of $\left(T_{1}, \ldots, T_{n}\right)$.
b) Deduce the distribution of N_{t}, for arbitrary t.

Exercise 6 Large deviations. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, X_{1} with mean μ, and

$$
L(\lambda)=\left\{\begin{array}{cl}
\log \mathbb{E}\left(e^{\lambda X_{1}}\right) & \text { if } \mathbb{E}\left(e^{\lambda X_{1}}\right)<\infty \\
+\infty & \text { otherwise }
\end{array}\right.
$$

and $L^{*}(x)=\sup (x \lambda-L(\lambda) \mid \lambda \in \mathbb{R})$.
a) Check that for any $\lambda \in \mathbb{R}, L(\lambda) \geq \lambda \mu$.
b) Prove that for any $\alpha>0$ and $n \geq 1$,

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{n}-\mu \geq \alpha\right) \leq e^{-n L^{*}(\mu+\alpha)} .
$$

c) Prove that for any $\alpha>0$ and $n \geq 1$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \alpha\right) \leq e^{-n L^{*}(\mu+\alpha)}+e^{-n L^{*}(\mu-\alpha)}
$$

d) Deduce the most general law of large numbers you can from the previous inequality. As a first step, you could for example calculate, L, L^{*} for ± 1 or Cauchy random variables and see what happens in the previous inequality.

