Probability, homework 7.

Exercise 1. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with standard Cauchy distribution, on the same probability space, and let $M_n = \max(X_1, \ldots, X_n)$. Prove that $(nM_n^{-1})_{n>1}$ converges in distribution and identify the limit.

Exercise 2. Convergence in L^1 in the strong law of large numbers.

a) Prove that if S_n converges to S almost surely, and $(S_n)_{n\geq 1}$ is uniformly integrable, then S_n converges to S in L^1 .

b) Prove that if the X_{ℓ} 's are i.i.d. and in L^1 , then $(n^{-1}\sum_{k=1}^n X_k)_{n\geq 1}$ is uniformly integrable.

c) Conclude that the strong law of large numbers in the almost sure sense implies the strong law of large numbers in the L^1 sense.

Exercise 3. Let $(X_n)_{n\geq 1}$ be a sequence of random variables, on the same probability space, with $\mathbb{E}(X_\ell) = \mu$ for any ℓ , and a weak correlation in the following sense: $\operatorname{Cov}(X_k, X_\ell) \leq f(|k-\ell|)$ for all indexes k, ℓ , where the sequence $(f(m))_{m\geq 0}$ converges to 0 as $m \to \infty$. Prove that $(n^{-1}\sum_{k=1}^n X_k)_{n\geq 1}$ converges to μ in L^2 .

Exercise 4 Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables, on the same probability space, with law given by $\mathbb{P}(X_1 = (-1)^m m) = 1/(cm^2 \log m)$ for $m \geq 2$ (*c* is the normalization constant $c = \sum_{m\geq 2} 1/(m^2 \log m)$). Prove that $\mathbb{E}(|X_1|) = \infty$, but there exists a constant $\mu \notin \{\pm \infty\}$ such that $(n^{-1} \sum_{k=1}^n X_k)_{n\geq 1}$ converges to μ in probability. Does it converge almost surely, and in L^p ?

Exercise 5. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. Bernoulli random variables, on the same probability space, with parameter 1/2, and let τ_n be the hitting time of level *n* by the partial sums, i.e. $\tau_n = \inf\{k \mid \sum_{\ell=1}^k X_\ell = n\}$. Show that $n^{-1}\tau_n$ converges to 2 almost surely.

Exercise 6. Kolmororov's maximal inequality and convergence of random series. Let $(X_n)_{n\geq 1}$ be a sequence of mutually independent random variables, on the same probability space, with expectation 0 and finite variance. Let $S_n = \sum_{\ell=1}^n X_{\ell}$. Prove that for any $\lambda > 0$,

$$\lambda^2 \mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \lambda) \le \operatorname{Var}(S_n).$$

Prove that if $\sum_{\ell} \operatorname{Var}(X_{\ell}) < \infty$, then $(S_n)_{n \geq 1}$ converges almost surely.