Probability, homework 3, due October 1.

Exercise 1. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^X .

- (i) \mathbb{P}^X has Gaussian density $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/(2\sigma^2)}$, for some $\sigma > 0$ and $\mu \in \mathbb{R}$; (ii) \mathbb{P}^X has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$ for some $\lambda > 0$;

- (ii) $\mathbb{P}^X = p\delta_a + q\delta_b$ where p + q = 1, $p, q \ge 0$ and $a, b \in \mathbb{R}$; (iv) \mathbb{P}^X is the Poisson distribution: $\mathbb{P}^X(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}$ for any integer $n \ge 0$, for some $\lambda > 0$.

Exercise 2. Let $(A_n)_{n\geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim_{n\to\infty} \mathbb{P}(A_n) = 0.$

Exercise 3. Suppose a distribution function F is given by

$$F(x) = \frac{1}{4}\mathbb{1}_{[0,\infty)}(x) + \frac{1}{2}\mathbb{1}_{[1,\infty)}(x) + \frac{1}{4}\mathbb{1}_{[2,\infty)}(x)$$

What is the probability of the following events, (-1/2, 1/2), (-1/2, 3/2), (2/3, 5/2), $(3,\infty)?$

Exercise 4. Let X be random variable on a countable probability space. Suppose that $\mathbb{E}(|X|) = 0$. Prove that $\mathbb{P}(X = 0) = 1$. Is it true, in general, that for any $\omega \in \Omega$ we have $X(\omega) = 0$?

Exercise 5. Let \mathbb{P} be a probability measure on Ω , endowed with a σ -algebra \mathscr{A} .

(i) What is the meaning of the following events, where all A_n 's are elements of \mathscr{A} ?

$$\liminf_{n \to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k$$

(ii) In the special case $\Omega = \mathbb{R}$ and \mathcal{A} is its Borel σ -algebra, for any $p \geq 1$, let

$$A_{2p} = \left[-1, 2 + \frac{1}{2p}\right), \quad A_{2p+1} = \left(-2 - \frac{1}{2p+1}, 1\right].$$

What are $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$? (iii) Prove that the following always holds:

$$\mathbb{P}\left(\liminf_{n\to\infty}A_n\right) \leq \liminf_{n\to\infty}\mathbb{P}\left(A_n\right), \mathbb{P}\left(\limsup_{n\to\infty}A_n\right) \geq \limsup_{n\to\infty}\mathbb{P}\left(A_n\right).$$

Exercise 6. A simple given property is genetically encoded as a pair of alleles a and A, which yields three possible genotypes $\{A, A\}$, $\{a, a\}$, and $\{A, a\}$, represented in the population with respective probabilities p, q, r, p + q + r = 1, homogenously and with these same probabilities for each gender. A parent passes on one of its alleles, chosen at random uniformly, to its child; the genotype of the child combines alleles from both parents.

We assume that these coefficients p, q, r are stable from one generation to another. Explain why they actually depend on only one parameter:

$$\begin{cases} p = P^2, \\ q = Q^2, \\ r = 2PQ, \end{cases}$$

where P + Q = 1.

Exercise 7 (bonus). A samouraï has a strange idea. With his saber, he cuts a rigid spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?