Probability, homework 3, due October 1.

Exercise 1. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^{X}.
(i) \mathbb{P}^{X} has Gaussian density $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$, for some $\sigma>0$ and $\mu \in \mathbb{R}$;
(ii) \mathbb{P}^{X} has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x>0}$ for some $\lambda>0$;
(iii) $\mathbb{P}^{X}=p \delta_{a}+q \delta_{b}$ where $p+q=1, p, q \geq 0$ and $a, b \in \mathbb{R}$;
(iv) \mathbb{P}^{X} is the Poisson distribution: $\mathbb{P}^{X}(\{n\})=e^{-\lambda} \frac{\lambda^{n}}{n!}$ for any integer $n \geq 0$, for some $\lambda>0$.

Exercise 2. Let $\left(A_{n}\right)_{n \geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=0$.

Exercise 3. Suppose a distribution function F is given by

$$
F(x)=\frac{1}{4} \mathbb{1}_{[0, \infty)}(x)+\frac{1}{2} \mathbb{1}_{[1, \infty)}(x)+\frac{1}{4} \mathbb{1}_{[2, \infty)}(x)
$$

What is the probability of the following events, $(-1 / 2,1 / 2),(-1 / 2,3 / 2),(2 / 3,5 / 2)$, $(3, \infty)$?

Exercise 4. Let X be random variable on a countable probability space. Suppose that $\mathbb{E}(|X|)=0$. Prove that $\mathbb{P}(X=0)=1$. Is it true, in general, that for any $\omega \in \Omega$ we have $X(\omega)=0$?

Exercise 5. Let \mathbb{P} be a probability measure on Ω, endowed with a σ-algebra \mathscr{A}.
(i) What is the meaning of the following events, where all A_{n} 's are elements of \mathscr{A} ?

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n \geq 1} \bigcap_{k \geq n} A_{k}, \quad \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k}
$$

(ii) In the special case $\Omega=\mathbb{R}$ and \mathcal{A} is its Borel σ-algebra, for any $p \geq 1$, let

$$
A_{2 p}=\left[-1,2+\frac{1}{2 p}\right), \quad A_{2 p+1}=\left(-2-\frac{1}{2 p+1}, 1\right] .
$$

What are $\liminf _{n \rightarrow \infty} A_{n}$ and $\limsup \sup _{n \rightarrow \infty} A_{n}$?
(iii) Prove that the following always holds:

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right), \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right) \geq \limsup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

Exercise 6. A simple given property is genetically encoded as a pair of alleles a and A, which yields three possible genotypes $\{A, A\}$), $\{a, a\}$, and $\{A, a\}$, represented in the population with respective probabilities $p, q, r, p+q+r=1$, homogenously and with these same probabilities for each gender. A parent passes on one of its alleles, chosen at random uniformly, to its child; the genotype of the child combines alleles from both parents.

We assume that these coefficients p, q, r are stable from one generation to another. Explain why they actually depend on only one parameter:

$$
\left\{\begin{array}{l}
p=P^{2} \\
q=Q^{2} \\
r=2 P Q
\end{array}\right.
$$

where $P+Q=1$.
Exercise 7 (bonus). A samouraï has a strange idea. With his saber, he cuts a rigid spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

