Probability, homework 4, due October 15.

Exercise 1. Let X be uniformly distributed on [0,1] and $\lambda > 0$. Show that $-\lambda^{-1}\log X$ has the same distribution as an exponential random variable with parameter λ .

Exercise 2. Let X_1, \ldots, X_n be bounded, independent and identically distributed random variables such that $\mathbb{E}(X_1) = 0$, $\mathbb{E}(X_1^2) = \sigma^2$, $\mathbb{E}(X_1^4) = \kappa^4$.

- (i) Calculate $\mathbb{E}\left(\left(\sum_{k=1}^{n} X_{i}\right)^{4}\right)$.
- (ii) Prove that for any $\varepsilon > 0$ and any random variable X, $\mathbb{P}(|X| > \varepsilon) \le \varepsilon^{-4} \mathbb{E}(X^4)$. (iii) Conclude that $\frac{X_1 + \dots + X_n}{n}$ converges to 0 almost surely, as $n \to \infty$.
- (iv) Explain why, in the above proof of a law of large numbers, the second moment (instead of fourth) would not be sufficient.

Exercise 3. Let X, Y be random variables such that X, Y and XY are in L^1 . Assume $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. By giving an example, prove that X and Y are not necessarily independent.

Exercise 4. Let X and Y be real random variables such that $\mathbb{E}(X^2), \mathbb{E}(Y^2) < \infty$. Prove that, if X and Y are independent, then

$$\operatorname{Cov}(X,Y) := \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = 0.$$

Exercise 5. Let X, Y be in L¹. Prove that, if X and Y are independent, $XY \in L^1$. Show this is not true in general (i.e. if X and Y are not independent).

Exercise 6. Let X, Y be independent random variables with positive integers values, with distribution

$$\mathbb{P}(X=i) = \mathbb{P}(Y=i) = \frac{1}{2^i}, i \in \mathbb{N}^*.$$

Find the following proabilitities.

(i) $\mathbb{P}(\max(X, Y) \ge i)$. (ii) $\mathbb{P}(X = Y)$. (iii) $\mathbb{P}(X > Y)$. (iv) P(X divides Y).

Exercise 7. Let X be a geometric random variable (i.e. X has vales in \mathbb{N} and $\mathbb{P}(X=i)=(1-p)^i p$ for some fixed $p\in(0,1)$). Prove the following memoryless property: for i, j > 0,

$$\mathbb{P}(X > i + j \mid X \ge i) = \mathbb{P}(X > j).$$

Exercise 8. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 9. In the (O, x, y) plane, a random ray emerges from a light source at point (-1, 0), towards the (O, y) axis. The angle with the (O, x) axis is uniform on $(-\frac{\pi}{2}, \frac{\pi}{2})$. What is the distribution of the impact point with the (O, y) axis?

Exercise 10. Let $\alpha > 0$ and, given $(\Omega, \mathcal{A}, \mathbb{P})$, let $(X_n, n \ge 1)$ be a sequence of independent real random variables with law $\mathbb{P}(X_n = 1) = \frac{1}{n^{\alpha}}$ and $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n^{\alpha}}$. Prove that $X_n \to 0$ in \mathcal{L}^1 , but that almost surely

$$\limsup_{n \to \infty} X_n = \begin{cases} 1 & \text{if } \alpha \le 1 \\ 0 & \text{if } \alpha > 1 \end{cases}.$$

Exercise 11 (Bonus). Let $(s_n)_{n\geq 0}$ be a 1-dimensional, unbiased random walk. For $a, b \in \mathbb{Z}$, let $T_a = \inf\{n \geq 0 : s_n = a\}$ and $T_{a,b} = \inf\{n \geq 0 : s_n = a \text{ or } s_n = b\}$. For $x \in \mathbb{Z}$, let $\omega(x) = \mathbb{P}(s_{T_{a,b}} = b \mid s_0 = x)$.

Prove that for a < x < b, $\omega(x) = \frac{1}{2}(\omega(x+1) + \omega(x-1))$, provided we define $\omega(a) = 0$ and $\omega(b) = 1$. Conclude that

$$\omega(x) = \frac{x-a}{b-a}.$$

From this result, prove that $\mathbb{P}(T_b < \infty) = 1$.