Probability, homework 4, due October 15.

Exercise 1. Let X be uniformly distributed on $[0,1]$ and $\lambda>0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ.

Exercise 2. Let X_{1}, \ldots, X_{n} be bounded, independent and identically distributed random variables such that $\mathbb{E}\left(X_{1}\right)=0, \mathbb{E}\left(X_{1}^{2}\right)=\sigma^{2}, \mathbb{E}\left(X_{1}^{4}\right)=\kappa^{4}$.
(i) Calculate $\mathbb{E}\left(\left(\sum_{k=1}^{n} X_{i}\right)^{4}\right)$.
(ii) Prove that for any $\varepsilon>0$ and any random variable $X, \mathbb{P}(|X|>\varepsilon) \leq \varepsilon^{-4} \mathbb{E}\left(X^{4}\right)$.
(iii) Conclude that $\frac{X_{1}+\cdots+X_{n}}{n}$ converges to 0 almost surely, as $n \rightarrow \infty$.
(iv) Explain why, in the above proof of a law of large numbers, the second moment (instead of fourth) would not be sufficient.

Exercise 3. Let X, Y be random variables such that X, Y ad $X Y$ are in L^{1}. Assume $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$. By giving an example, prove that X and Y are not necessarily independent.

Exercise 4. Let X and Y be real random variables such that $\mathbb{E}\left(X^{2}\right), \mathbb{E}\left(Y^{2}\right)<\infty$. Prove that, if X and Y are independent, then

$$
\operatorname{Cov}(X, Y):=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))=0
$$

Exercise 5. Let X, Y be in L^{1}. Prove that, if X and Y are independent, $X Y \in \mathrm{~L}^{1}$. Show this is not true in general (i.e. if X and Y are not independent).

Exercise 6. Let X, Y be independent random variables with positive integers values, with distribution

$$
\mathbb{P}(X=i)=\mathbb{P}(Y=i)=\frac{1}{2^{i}}, i \in \mathbb{N}^{*}
$$

Find the following proabilitities.
(i) $\mathbb{P}(\max (X, Y) \geq i)$.
(ii) $\mathbb{P}(X=Y)$.
(iii) $\mathbb{P}(X>Y)$.
(iv) $P(X$ divides $Y)$.

Exercise 7. Let X be a geometric random variable (i.e. X has vales in \mathbb{N} and $\mathbb{P}(X=i)=(1-p)^{i} p$ for some fixed $\left.p \in(0,1)\right)$. Prove the following memoryless property: for $i, j>0$,

$$
\mathbb{P}(X>i+j \mid X \geq i)=\mathbb{P}(X>j)
$$

Exercise 8. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 9. In the (O, x, y) plane, a random ray emerges from a light source at point $(-1,0)$, towards the (O, y) axis. The angle with the (O, x) axis is uniform on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What is the distribution of the impact point with the (O, y) axis?

Exercise 10. Let $\alpha>0$ and, given $(\Omega, \mathcal{A}, \mathbb{P})$, let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent real random variables with law $\mathbb{P}\left(X_{n}=1\right)=\frac{1}{n^{\alpha}}$ and $\mathbb{P}\left(X_{n}=0\right)=$ $1-\frac{1}{n^{\alpha}}$. Prove that $X_{n} \rightarrow 0$ in \mathcal{L}^{1}, but that almost surely

$$
\limsup _{n \rightarrow \infty} X_{n}=\left\{\begin{array}{lll}
1 & \text { if } & \alpha \leq 1 \\
0 & \text { if } & \alpha>1
\end{array}\right.
$$

Exercise 11 (Bonus). Let $\left(s_{n}\right)_{n \geq 0}$ be a 1-dimensional, unbiased random walk. For $a, b \in \mathbb{Z}$, let $T_{a}=\inf \left\{n \geq 0: s_{n}=a\right\}$ and $T_{a, b}=\inf \left\{n \geq 0: s_{n}=a\right.$ or $\left.s_{n}=b\right\}$. For $x \in \mathbb{Z}$, let $\omega(x)=\mathbb{P}\left(s_{T_{a, b}}=b \mid s_{0}=x\right)$.

Prove that for $a<x<b, \omega(x)=\frac{1}{2}(\omega(x+1)+\omega(x-1))$, provided we define $\omega(a)=0$ and $\omega(b)=1$. Conclude that

$$
\omega(x)=\frac{x-a}{b-a} .
$$

From this result, prove that $\mathbb{P}\left(T_{b}<\infty\right)=1$.

