Probability, homework 7, due November 19.

Exercise 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be such that Ω is cointable and $\mathcal{A}=2^{\Omega}$. Prove that almost sure convergene and convergence in probability are the same on this probability space.

Exercise 2. Let $\left(X_{i}\right)_{i>1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}=\frac{1}{4} \text { a.s. }
$$

Exercise 3. Calculate

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}
$$

Hint: consider the sum of i.i.d. Poisson random variables. A Poisson random variable, with parameter λ, has values in \mathbb{N} and $\mathbb{P}(X=\ell)=e^{-\lambda \frac{\lambda^{\ell}}{\ell!}}$.

Exercise 4. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

Exercise 5. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d standard Cauchy random variables.
(i) Does $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converge almost surely?
(ii) Does $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ converge in distribution?
(iii) Does $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converge in distribution?
(iv) Comment on these results in connection with the central limit theorem and the law of large numbers.

Exercise 6. The problem of the collector. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_{n}=\inf \{m \geq$ $\left.1:\left\{X_{1}, \ldots, X_{m}\right\}=\{1, \ldots, n\}\right\}$ be the first time for which all values have been observed.
(i) Let $\tau_{n}^{(k)}=\inf \left\{m \geq 1:\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|=k\right\}$. Prove that the random variables $\left(\tau_{n}^{(k)}-\tau_{n}^{(k-1)}\right)_{2 \leq k \leq n}$ are independent and calculate their respective distributions.
(ii) Deduce that $\frac{\tau_{n}}{n \log n} \rightarrow 1$ in probability as $n \rightarrow \infty$.

Exercise 7 (bonus). The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a
continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right) .
$$

(i) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=\right.$ $1)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
(ii) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$.

