## Probability, homework 7, due November 19.

**Exercise 1.** Let  $(\Omega, \mathcal{A}, \mathbb{P})$  be such that  $\Omega$  is cointable and  $\mathcal{A} = 2^{\Omega}$ . Prove that almost sure convergence and convergence in probability are the same on this probability space.

**Exercise 2.** Let  $(X_i)_{i\geq 1}$  be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2} = \frac{1}{4} \text{ a.s.}$$

Exercise 3. Calculate

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

Hint: consider the sum of i.i.d. Poisson random variables. A Poisson random variable, with parameter  $\lambda$ , has values in  $\mathbb{N}$  and  $\mathbb{P}(X = \ell) = e^{-\lambda} \frac{\lambda^{\ell}}{\ell!}$ .

**Exercise 4.** Let f be a continuous function on [0, 1]. Calculate the asymptotics, as  $n \to \infty$ , of

$$\int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n.$$

**Exercise 5.** Let  $(X_i)_{i\geq 1}$  be i.i.d standard Cauchy random variables. (i) Does  $\frac{1}{n} \sum_{i=1}^{n} X_i$  converge almost surely? (ii) Does  $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$  converge in distribution?

- (iii) Does  $\frac{1}{n} \sum_{i=1}^{n} X_i$  converge in distribution?

(iv) Comment on these results in connection with the central limit theorem and the law of large numbers.

**Exercise 6.** The problem of the collector. Let  $(X_k)_{k\geq 1}$  be a sequence of independent random variables uniformly distributed on  $\{1, \ldots, n\}$ . Let  $\tau_n = \inf\{m \ge n\}$ 1 :  $\{X_1, \ldots, X_m\} = \{1, \ldots, n\}$  be the first time for which all values have been observed.

(i) Let  $\tau_n^{(k)} = \inf\{m \ge 1 : |\{X_1, \dots, X_m\}| = k\}$ . Prove that the random variables  $(\tau_n^{(k)} - \tau_n^{(k-1)})_{2 \le k \le n}$  are independent and calculate their respective distributions. (ii) Deduce that  $\frac{\tau_n}{n \log n} \to 1$  in probability as  $n \to \infty$ .

Exercise 7 (bonus). The goal of this exercise is to prove that any function, continuous on an interval of  $\mathbb{R}$ , can be approximated by polynomials, arbitrarily close for the  $L^{\infty}$  norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

(i) Let  $S_n(x) = B^{(n,x)}/n$ , where  $B^{(n,x)}$  is a binomial random variable with parameters n and x:  $B^{(n,x)} = \sum_{\ell=1}^{n} X_i$  where the  $X_i$ 's are independent and  $\mathbb{P}(X_i = 1) = x$ ,  $\mathbb{P}(X_i = 0) = 1 - x$ . Prove that  $B_n(x) = \mathbb{E}(f(S_n(x)))$ . (ii) Prove that  $||B_n - f||_{L^{\infty}([0,1])} \to 0$  as  $n \to \infty$ .