Probability, homework 8, due November 26.

Exercise 1. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ-algebra of \mathcal{A}. Show that $|\mathbb{E}(Y \mid \mathcal{G})| \leq \mathbb{E}(|Y| \mid \mathcal{G})$.

Exercise 2. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ algebra of \mathcal{A}. Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ-algebra of \mathcal{G}. Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H})=$ $\mathbb{E}(Y \mid \mathcal{H})$.

Exercise 3. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration, $\left(X_{n}\right)_{n \geq 0}$ a sequence of integrable random variables with $\mathbb{E}\left(X_{n} \mid \overline{\mathcal{F}}_{n-1}\right)=0$, and assume X_{n} is \mathcal{F}_{n}-measurable for every n. Let $S_{n}=\sum_{k=0}^{n} X_{k}$. Show that $\left(S_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.

Exercise 4. Let T be a stopping time for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that \mathcal{F}_{T} is a σ-algebra.

Exercise 5. Let S and T be stopping times for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that $\max (S, T)$ and $\min (S, T)$ are stopping times.

Exercise 6. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent integrable random variables such that $\mathbb{E}\left(X_{i}\right)=m_{i}, \operatorname{var}\left(X_{i}\right)=\sigma_{i}^{2}, i \geq 1$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq\right.$ $i \leq n$).
(i) Find sequences $\left(b_{n}\right)_{n \geq 1},\left(c_{n}\right)_{n \geq 1}$ of real numbers such that $\left(S_{n}^{2}+b_{n} S_{n}+c_{n}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.
(ii) Assume moreover that there is a real number λ such that $e^{\lambda X_{i}} \in \mathrm{~L}^{1}$ for any $i \geq 1$. Find a sequence $\left(a_{n}^{(\lambda)}\right)_{n \geq 1}$ such that $\left(e^{\lambda S_{n}-a_{n}^{(\lambda)}}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.

Exercise 7 (bonus). You toss a coin repeatedly and independently. The probability to get a head is p, a tail is $1-p$. Let A_{k} be the following event: k or more consecutive heads occur amongst the tosses numbered $2^{k}, \ldots, 2^{k+1}-1$. Prove that $\mathbb{P}\left(A_{k}\right.$ i.o. $)=1$ if $p \geq 1 / 2,0$ otherwise.

