Probability, homework 9, due December 10.

Exercise 1. Let $\left(X_{k}\right)_{k \geq 0}$ be i.i.d. random variables, $\mathcal{F}_{m}=\sigma\left(X_{1}, \ldots, X_{m}\right)$ and $Y_{m}=\prod_{k=1}^{m} X_{k}$. Under which conditions is Y a \mathcal{F}-submartingale, supermartingale, martingale?

Exercise 2. Let $\left(S_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)$-martingale and τ a stopping time with finite expectation. Assume that there is a $c>0$ such that, for all $n, \mathbb{E}\left(\left|S_{n+1}-S_{n}\right| \mid\right.$ $\left.\mathcal{F}_{n}\right)<c$.
(i) Prove that $\left(S_{\tau \wedge n}\right)_{n \geq 0}$ is a uniformly bounded martingale, and that $\mathbb{E}\left(S_{\tau}\right)=$ $\mathbb{E}\left(S_{0}\right)$.
(ii) Consider now the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=$ $\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. For some $a \in \mathbb{N}^{*}$, let $\tau=\inf \left\{n \mid S_{n}=-a\right\}$. Prove that

$$
\mathbb{E}(\tau)=\infty
$$

Exercise 3. As previously, consider the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2, \mathcal{F}_{n}=\sigma\left(X_{i}, 0 \leq i \leq n\right)$.
(i) Prove that $\left(S_{n}^{2}-n, n \geq 0\right)$ is a $\left(\mathcal{F}_{n}\right)$-martingale. Let τ be a bounded stopping time. Prove that $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$.
(ii)Take now $\tau=\inf \left\{n \mid S_{n} \in\{-a, b\}\right\}$, where $a, b \in \mathbb{N}^{*}$. Prove that $\mathbb{E}\left(S_{\tau}\right)=0$ and $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$. What is $\mathbb{P}\left(S_{\tau}=-a\right)$? What is $\mathbb{E}(\tau)$? Get the last result of the previous exercise by justifying the limit $b \rightarrow \infty$.

Exercise 4. Let $X_{n}, n \geq 0$, be iid complex random variables such that $\mathbb{E}\left(X_{1}\right)=$ $0,0<\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. For some parameter $\alpha>0$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}
$$

Prove that if $\alpha>1 / 2, S_{n}$ converges almost surely. What if $0<\alpha \leq 1 / 2$?
Exercise 5. In a game between a gambler and a croupier, suppose that the total capital in play is 1 . After the nth hand the proportion of the capital held by the gambler is denoted $X_{n} \in[0,1]$, thus that held by the croupier is $1-X_{n}$. We assume $X_{0}=p \in(0,1)$. The rules of the game are such that after n hands, the probability for the gambler to win the $(n+1)$ th hand is X_{n}; if he does, he gains half of the capital the croupier held after the nth hand, while if he loses he gives half of his capital. Let $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
(i) Show that $\left(X_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale.
(ii) Show that $\left(X_{n}\right)_{n \geq 1}$ converges a.s. and in L^{2} towards a limit Z.
(iii) Show that $\mathbb{E}\left(X_{n+1}^{2}\right)=\mathbb{E}\left(3 X_{n}^{2}+X_{n}\right) / 4$. Deduce that $\mathbb{E}\left(Z^{2}\right)=\mathbb{E}(Z)=p$. What is the law of Z ?
(iv) For any $n \geq 0$, let $Y_{n}=2 X_{n+1}-X_{n}$. Find the conditional law of X_{n+1} knowing \mathcal{F}_{n}. Prove that $\mathbb{P}\left(Y_{n}=0 \mid \mathcal{F}_{n}\right)=1-X_{n}, \mathbb{P}\left(Y_{n}=1 \mid \mathcal{F}_{n}\right)=X_{n}$ and express the law of Y_{n}.
(v) Let $G_{n}=\left\{Y_{n}=1\right\}, P_{n}=\left\{Y_{n}=0\right\}$. Prove that $Y_{n} \rightarrow Z$ a.s. and deduce that $\mathbb{P}\left(\liminf _{n \rightarrow \infty} G_{n}\right)=p, \mathbb{P}\left(\liminf _{n \rightarrow \infty} P_{n}\right)=1-p$. Are the variables $\left\{Y_{n}, n \geq 1\right\}$ independent?
(vi) Interpret the questions c), d), e) in terms of gain, loss, for the gambler.

Exercise 6. Let $a>0$ be fixed, $\left(X_{i}\right)_{i \geq 1}$ be iid, \mathbb{R}^{d}-valued random variables, uniformly distributed on the ball $\mathrm{B}(0, a)$. Set $S_{n}=x+\sum_{i=1}^{n} X_{i}$.
(i) Let f be a superharmonic function. Show that $\left(f\left(S_{n}\right)\right)_{n \geq 1}$ defines a supermartingale.
(ii) Prove that if $d \leq 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \geq 2$?

Exercise 7 (bonus). Let X be a standard random walk in dimension 1, and for any positive integer $a, \tau_{a}=\inf \left\{n \geq 0 \mid X_{\tau_{a}}=a\right\}$. For any $\theta>0$, calculate

$$
\mathbb{E}\left((\cosh \theta)^{-\tau_{a}}\right)
$$

