Probability, homework 2, due September 23.

Exercise 1. Suppose that Ω is an infinite set (countable or not), and let \mathcal{A} be the family of all subsets which are either finite or have finite complement. Prove that \mathcal{A} is not a σ -algebra.

Exercise 2. Let $(A_n)_{n\geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim_{n\to\infty} \mathbb{P}(A_n) = 0$.

Exercise 3. Prove the Bonferroni inequalities: if $A_i \in \mathcal{A}$ is a sequence of events, then

$$\mathbb{P}\left(\cup_{i=1}^{n}A_{i}\right) \geq \sum_{i=1}^{n}\mathbb{P}(A_{i}) - \sum_{i < j}\mathbb{P}(A_{i} \cap A_{j}).$$

Exercise 4. A pair of dice is rolled until a sum of either 5 or 7 appears. Find the probability that a 5 occurs first. Hint: consider the event E_n that a 5 occurs on the *n*th roll and no 5 or 7 occurs on the first (n-1) rolls.

Exercise 5. Let \mathbb{P} be a probability measure on Ω endowed with a σ -algebra \mathscr{A} .

(i) What is the meaning of the following events, where all A_n's are elements of A?

$$\liminf_{n \to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k.$$

(ii) In the special case $\Omega = \mathbb{R}$ and \mathcal{A} is its Borel σ -algebra, for any $p \geq 1$, let

$$A_{2p} = \left[-1, 2 + \frac{1}{2p}\right), \quad A_{2p+1} = \left(-2 - \frac{1}{2p+1}, 1\right].$$

What are $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$? (iii) Prove that the following always holds:

$$\mathbb{P}\left(\liminf_{n\to\infty}A_n\right) \leq \liminf_{n\to\infty}\mathbb{P}\left(A_n\right), \mathbb{P}\left(\limsup_{n\to\infty}A_n\right) \geq \limsup_{n\to\infty}\mathbb{P}\left(A_n\right).$$

Exercise 6. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N)? Prove that $\mathbb{P}(n \wedge m = 1) \xrightarrow[N \to \infty]{} \zeta(2)^{-1}$ where $\zeta(2) = \prod_{p \in \mathcal{P}} (1 - p^{-2})^{-1} = \sum_{n \ge 1} n^{-2} = \frac{\pi^2}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m = 1$ means that their greatest common divisor is 1.