Probability, homework 2, due September 23.

Exercise 1. Suppose that Ω is an infinite set (countable or not), and let \mathcal{A} be the family of all subsets which are either finite or have finite complement. Prove that \mathcal{A} is not a σ-algebra.

Exercise 2. Let $\left(A_{n}\right)_{n \geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=0$.

Exercise 3. Prove the Bonferroni inequalities: if $A_{i} \in \mathcal{A}$ is a sequence of events, then

$$
\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)
$$

Exercise 4. A pair of dice is rolled until a sum of either 5 or 7 appears. Find the probability that a 5 occurs first. Hint: consider the event E_{n} that a 5 occurs on the nth roll and no 5 or 7 occurs on the first $(n-1)$ rolls.

Exercise 5. Let \mathbb{P} be a probability measure on Ω endowed with a σ-algebra \mathscr{A}.
(i) What is the meaning of the following events, where all A_{n} 's are elements of \mathscr{A} ?

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n \geq 1} \bigcap_{k \geq n} A_{k}, \quad \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k}
$$

(ii) In the special case $\Omega=\mathbb{R}$ and \mathcal{A} is its Borel σ-algebra, for any $p \geq 1$, let

$$
A_{2 p}=\left[-1,2+\frac{1}{2 p}\right), \quad A_{2 p+1}=\left(-2-\frac{1}{2 p+1}, 1\right] .
$$

What are $\liminf _{n \rightarrow \infty} A_{n}$ and $\limsup \sup _{n \rightarrow \infty} A_{n} ?$
(iii) Prove that the following always holds:

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right), \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right) \geq \limsup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

Exercise 6. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N)? Prove that $\mathbb{P}(n \wedge m=1) \underset{N \rightarrow \infty}{\longrightarrow} \zeta(2)^{-1}$ where $\zeta(2)=\prod_{p \in \mathcal{P}}\left(1-p^{-2}\right)^{-1}=\sum_{n \geq 1} n^{-2}=\frac{\pi^{2}}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m=1$ means that their greatest common divisor is 1.

