Probability, homework 3, due September 30.

Exercise 1. Let \mathcal{A} be a σ-algebra, \mathbb{P} a probability measure and $\left(A_{n}\right)_{n \geq 1}$ (resp. $\left(B_{n}\right)_{n \geq 1}$) be a sequence of events in \mathcal{A} which converges to A (resp. B). Assume that $\mathbb{P}(B)>0$ and $\mathbb{P}\left(B_{n}\right)>0$ for all n. Show that
(i) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \mid B\right)=\mathbb{P}(A \mid B)$;
(ii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A \mid B_{n}\right)=\mathbb{P}(A \mid B)$;
(iii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \mid B_{n}\right)=\mathbb{P}(A \mid B)$.

Exercise 2. Let A, B, C be three mutually independent events and $\mathbb{P}(B \cap C) \neq 0$. Prove that $\mathbb{P}(A \mid B \cap C)=\mathbb{P}(A)$.

Exercise 3. The probability that a male driver makes an insurance claim in any given year is 0.3 , while the probability that a female driver makes an insurance claim in any given year is 0.2 . Furthermore, claims by the same driver in successive years are independent events. We assume equal numbers of male and female drivers.

What is the probability that a randomly chosen driver makes a claim in the first year (event A)? What is the probability that a randomly chosen driver makes a claim in the first and second years (event B)?

What is $\mathbb{P}(B \mid A)$, the probability that a randomly chosen driver makes a claim in the second year, conditionally to the fact that he/she made one on the first year? How can you explain that it is different from $\mathbb{P}(A)$ although claims in successive years are independent? If you are the head of an insurance company and want one more client, would you prefer one who had a claim the previous year or the contrary?

Exercise 4. A simple given property is genetically encoded as a pair of alleles a and A, which yields three possible genotypes $\{A, A\}$), $\{a, a\}$, and $\{A, a\}$, represented in the population with respective probabilities $p, q, r, p+q+r=1$, homogenously and with these same probabilities for each gender. A parent passes on one of its alleles, chosen at random uniformly, to its child; the genotype of the child combines alleles from both parents.

We assume that these coefficients p, q, r are stable from one generation to another. Explain why they actually depend on only one parameter:

$$
\left\{\begin{array}{l}
p=P^{2} \\
q=Q^{2} \\
r=2 P Q
\end{array}\right.
$$

where $P+Q=1$.
Exercise 5. Let X be a random variable with Poisson distribution with paameter $\lambda>0$. What is $\mathbb{E}(X)$? What is $\operatorname{Var}(X)$? Can you calculate the moment $\mathbb{E}\left(X^{k}\right)$ for any $k \in \mathbb{N}$? Hint: first calculate $\mathbb{E}(X(X-1) \ldots(X-k+1))$ for any $k \in \mathbb{N}$.

Exercise 6. Let X be a geometric random variable (i.e. X has vales in \mathbb{N} and $\mathbb{P}(X=i)=(1-q)^{i} q$ for some fixed $\left.q \in(0,1)\right)$. Prove the following memoryless property: for $i, j>0$,

$$
\mathbb{P}(X>i+j \mid X \geq i)=\mathbb{P}(X>j)
$$

