Exercise 1. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^{X}.
(i) $\mathbb{P}^{X}=p \delta_{a}+q \delta_{b}$ where $p+q=1, p, q \geq 0$ and $a, b \in \mathbb{R}$;
(ii) \mathbb{P}^{X} is the Poisson distribution: $\mathbb{P}^{X}(\{n\})=e^{-\lambda} \frac{\lambda^{n}}{n!}$ for any integer $n \geq 0$, for some $\lambda>0$.

Exercise 1. Let X be uniformly distributed on $[0,1]$ and $\lambda>0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ.

Exercise 3. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 4. Suppose that a fair coin is tossed N times, with all outcomes (i.e. sequences of N elements in $\{H, T\}$) being equiprobable. Let $X_{i} \in\{H, T\}$ be the outcome of the i th coin toss.
(i) What are Ω, \mathcal{A} and \mathbb{P} ?
(ii) Let p_{N} be the probability that the pattern (H, H, T, H, T, H, H) occurs at some point in the sequence $\left(X_{i}\right)_{i=1}^{N}$. What is the limit of p_{N} as $N \rightarrow \infty$?

Exercise 5. Let X be a real random variable in $\mathcal{L}^{1}(\Omega, \mathcal{A}, \mathbb{P})$. Let $\left(A_{n}\right)_{n \geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}\left(A_{N}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Prove that $\mathbb{E}\left(X \mathbb{1}_{A_{n}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$.

Exercise 6. Let $c>0$ and X be a real random variable such that for any $\lambda \in \mathbb{R}$

$$
\mathbb{E}\left(e^{\lambda X}\right) \leq e^{c \frac{\lambda^{2}}{4}}
$$

Prove that, for any $\delta>0$,

$$
\mathbb{P}(|X|>\delta) \leq 2 e^{-\frac{\delta^{2}}{c}}
$$

