Probability, homework 5, due October 14.

Exercise 1. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^X .

- (i) $\mathbb{P}^X = p\delta_a + q\delta_b$ where p + q = 1, $p, q \ge 0$ and $a, b \in \mathbb{R}$; (ii) \mathbb{P}^X is the Poisson distribution: $\mathbb{P}^X(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}$ for any integer $n \ge 0$, for some $\lambda > 0$.

Exercise 1. Let X be uniformly distributed on [0,1] and $\lambda > 0$. Show that $-\lambda^{-1}\log X$ has the same distribution as an exponential random variable with parameter λ .

Exercise 3. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 4. Suppose that a fair coin is tossed N times, with all outcomes (i.e. sequences of N elements in $\{H, T\}$) being equiprobable. Let $X_i \in \{H, T\}$ be the outcome of the ith coin toss.

- (i) What are Ω, \mathcal{A} and \mathbb{P} ?
- (ii) Let p_N be the probability that the pattern (H, H, T, H, T, H, H) occurs at some point in the sequence $(X_i)_{i=1}^N$. What is the limit of p_N as $N \to \infty$?

Exercise 5. Let X be a real random variable in $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$. Let $(A_n)_{n\geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}(A_N) \xrightarrow[n\to\infty]{} 0$. Prove that $\mathbb{E}(X\mathbb{1}_{A_n}) \xrightarrow[n\to\infty]{} 0$.

Exercise 6. Let c > 0 and X be a real random variable such that for any $\lambda \in \mathbb{R}$

$$\mathbb{E}\left(e^{\lambda X}\right) \le e^{c\frac{\lambda^2}{4}}.$$

Prove that, for any $\delta > 0$,

$$\mathbb{P}\left(|X| > \delta\right) \le 2e^{-\frac{\delta^2}{c}}.$$