Probability, homework 6, due November 4.

Exercise 1. Let X be a standard Cauchy random variable. What is the density of $1 / X$?

Exercise 2. Let X_{1}, \ldots, X_{n} be bounded, independent and identically distributed random variables such that $\mathbb{E}\left(X_{1}\right)=0, \mathbb{E}\left(X_{1}^{2}\right)=\sigma^{2}, \mathbb{E}\left(X_{1}^{4}\right)=\kappa^{4}$.
(i) Calculate $\mathbb{E}\left(\left(\sum_{k=1}^{n} X_{i}\right)^{4}\right)$.
(ii) Prove that for any $\varepsilon>0$ and any random variable $X, \mathbb{P}(|X|>\varepsilon) \leq \varepsilon^{-4} \mathbb{E}\left(X^{4}\right)$.
(iii) Conclude that $\frac{X_{1}+\cdots+X_{n}}{n}$ converges to 0 almost surely, as $n \rightarrow \infty$.

Exercise 3. Let X, Y be independent random variables with positive integers values, with distribution

$$
\mathbb{P}(X=i)=\mathbb{P}(Y=i)=\frac{1}{2^{i}}, i \in \mathbb{N}^{*}
$$

Find the following proabilitities.
(i) $\mathbb{P}(\max (X, Y) \geq i)$.
(ii) $\mathbb{P}(X=Y)$.
(iii) $\mathbb{P}(X>Y)$.

Exercise 4. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

Exercise 5. Let $\alpha>0$ and, given $(\Omega, \mathcal{A}, \mathbb{P})$, let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent real random variables with law $\mathbb{P}\left(X_{n}=1\right)=\frac{1}{n^{\alpha}}$ and $\mathbb{P}\left(X_{n}=0\right)=$ $1-\frac{1}{n^{\alpha}}$. Prove that $\mathbb{E}\left(X_{n}\right) \rightarrow 0$, but that almost surely

$$
\limsup _{n \rightarrow \infty} X_{n}=\left\{\begin{array}{lll}
1 & \text { if } & \alpha \leq 1 \\
0 & \text { if } & \alpha>1
\end{array}\right.
$$

Exercise 6. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is $1-p$. Let A_{k} be the following event: k or more consecutive heads occur amongst the tosses numbered $2^{k}, \ldots, 2^{k+1}-1$. Prove that $\mathbb{P}\left(A_{k}\right.$ i.o. $)=1$ if $p \geq 1 / 2,0$ otherwise.

