Probability, homework 7, due November 11.

Exercise 1. Let X be uniform on $(-\pi, \pi)$ and $Y=\sin (X)$. Show that the density of Y is

$$
\frac{1}{\pi \sqrt{1-y^{2}}} \mathbb{1}_{[-1,1]}(y)
$$

Exercise 2. Let (X, Y) be uniform on the unit ball, i.e. it has density

$$
f_{(X, Y)}(x, y)=\left\{\begin{array}{lll}
\frac{1}{\pi} & \text { if } & x^{2}+y^{2} \leq 1 \\
0 & \text { if } & x^{2}+y^{2}>1
\end{array}\right.
$$

Find the density of $\sqrt{X^{2}+Y^{2}}$.
Exercise 3. In the (O, x, y) plane, a random ray emerges from a light source at point $(-1,0)$, towards the (O, y) axis. The angle with the (O, x) axis is uniform on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What is the distribution of the impact point with the (O, y) axis?

Exercise 4. On a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is given a random variable (X, Y) with values in \mathbb{R}^{2}.
(a) If the law of (X, Y) is $\lambda \mu e^{-\lambda x-\mu y} \mathbb{1}_{\mathbb{R}_{+}^{2}}(x, y) \mathrm{d} x \mathrm{~d} y$, what is the law of $\min (X, Y)$?
(b) If the law of (X, Y) is $\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}} \mathrm{~d} x \mathrm{~d} y$, what is the law of X / Y ?

Exercise 5. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}=\frac{1}{4} \text { a.s. }
$$

Exercise 6. Assume that X_{1}, X_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$. Let $Y^{(n)}=n \inf \left\{X_{i}, 1 \leq i \leq n\right\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(f\left(Y^{(n)}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{+}} f(u) e^{-u} \mathrm{~d} u .
$$

