Probability, homework 7, due November 11.

Exercise 1. Let X be uniform on $(-\pi, \pi)$ and $Y = \sin(X)$. Show that the density of Y is

$$\frac{1}{\pi\sqrt{1-y^2}}\mathbb{1}_{[-1,1]}(y).$$

Exercise 2. Let (X, Y) be uniform on the unit ball, i.e. it has density

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{1}{\pi} & \text{if } x^2 + y^2 \le 1, \\ 0 & \text{if } x^2 + y^2 > 1. \end{cases}$$

Find the density of $\sqrt{X^2 + Y^2}$.

Exercise 3. In the (O, x, y) plane, a random ray emerges from a light source at point (-1, 0), towards the (O, y) axis. The angle with the (O, x) axis is uniform on $(-\frac{\pi}{2}, \frac{\pi}{2})$. What is the distribution of the impact point with the (O, y) axis?

Exercise 4. On a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is given a random variable (X, Y) with values in \mathbb{R}^2 .

(a) If the law of (X, Y) is $\lambda \mu e^{-\lambda x - \mu y} \mathbb{1}_{\mathbb{R}^2_+}(x, y) dx dy$, what is the law of $\min(X, Y)$? (b) If the law of (X, Y) is $\frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy$, what is the law of X/Y?

Exercise 5. Let $(X_i)_{i\geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2} = \frac{1}{4} \text{ a.s.}$$

Exercise 6. Assume that X_1, X_2, \ldots are independent random variables uniformly distributed on [0, 1]. Let $Y^{(n)} = n \inf\{X_i, 1 \le i \le n\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f : \mathbb{R}^+ \to \mathbb{R}$,

$$\mathbb{E}\left(f(Y^{(n)})\right) \underset{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^+} f(u) e^{-u} \mathrm{d}u.$$