Probability, homework 8, due December 3.

Exercise 1. Let X be a random variable with density $f_{X}(x)=(1-|x|) \mathbb{1}_{(-1,1)}(x)$. Show that its characteristic function is

$$
\phi_{X}(u)=\frac{2(1-\cos u)}{u^{2}}
$$

Exercise 2. Let f be a continuous fuction on \mathbb{R}, and assume that $\left(X_{n}\right)_{n \geq 1}$ converges to X in distribution. Prove that $\left(f\left(X_{n}\right)\right)_{n \geq 0}$ converges to $f(X)$ in distribution.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ be real random variables, with X_{n} and Y_{n} independent for any $n \geq 1$, and assume that X_{n} converges in distribution to X and Y_{n} to Y. Prove that $X_{n}+Y_{n}$ converges in distribution to $X+Y$.

Exercise 4. Prove that if a sequence of real random variables $\left(X_{n}\right)$ converge in distribution to X, and $\left(Y_{n}\right)$ converges in distribution to a constant c, then $X_{n}+Y_{n}$ converges in distribution to $X+c$.

Exercise 5. Let the X_{ℓ} 's be i.i.d. with mean 0 and variance $0<\sigma^{2}<\infty$. Does $n^{-\alpha} \sum_{\ell=1}^{n} X_{\ell}$ converge in distribution for $0<\alpha<1 / 2$? Same question for $\alpha=1 / 2$ and $\alpha>1 / 2$.

Exercise 6. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with standard Cauchy distribution and let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Prove that $\left(n M_{n}^{-1}\right)_{n \geq 1}$ converges in distribution and identify the limit.

Exercise 7. Let the X_{ℓ} 's be independent uniformly bounded real random variables. Let $\mu_{\ell}=\mathbb{E}\left(X_{\ell}\right)$, and $\sigma_{\ell}^{2}=\operatorname{Var}\left(X_{\ell}\right)$ satisfy $c_{1}<\sigma_{\ell}^{2}$ for some c_{1} which does not depend on ℓ. State and prove a central limit theorem for $\sum_{\ell=1}^{n} X_{\ell}$.

Exercise 8. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent real random variables, all uniformly distributed on $[0,1]$. Does $n \inf \left(X_{1}, \ldots, X_{n}\right)$ converge in law as $n \rightarrow \infty$? If yes, what is the limiting distribution?

Exercise 9. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

(i) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and x : $B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
(ii) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$ and conclude.

Exercise 10. Let $\left(s_{n}\right)_{n \geq 0}$ be a 1-dimensional, unbiased random walk. For $a, b \in \mathbb{Z}$, let $T_{a}=\inf \left\{n \geq 0: s_{n}=a\right\}$ and $T_{a, b}=\inf \left\{n \geq 0: s_{n}=a\right.$ or $\left.s_{n}=b\right\}$. For $x \in \mathbb{Z}$, let $\omega(x)=\mathbb{P}\left(s_{T_{a, b}}=b \mid s_{0}=x\right)$.

Prove that for $a<x<b, \omega(x)=\frac{1}{2}(\omega(x+1)+\omega(x-1))$, provided we define $\omega(a)=0$ and $\omega(b)=1$. Conclude that

$$
\omega(x)=\frac{x-a}{b-a} .
$$

From this result, prove that $\mathbb{P}\left(T_{b}<\infty\right)=1$.

