Probability, homework 9, due December 9.

Exercise 1. Let X_{λ} be a real random variable, with Poisson distribution with parameter λ. Calculate the characteristic function of X_{λ}. Conclude that $\left(X_{\lambda}-\lambda\right) / \sqrt{\lambda}$ converges in distribution to a standard Gaussian, as $\lambda \rightarrow \infty$.

Exercise 2. Find an example of real random variables $\left(X_{n}\right)_{n \geq 1}, X$, in L^{1}, such that $\left(X_{n}\right)_{n \geq 1}$ converges to X in distribution and $\mathbb{E}\left(X_{n}\right)$ converges, but not towards $\mathbb{E}(X)$.

Exercise 3. Assume a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is such that Ω is countable and $\mathcal{A}=2^{\Omega}$. Prove that convergence in probability and convergence almost sure are the same.

Exercise 4. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. Bernoulli random variables, on the same probability space, with parameter $1 / 2\left(\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=1 / 2\right)$, and let τ_{n} be the hitting time of level n by the partial sums, i.e. $\tau_{n}=\inf \{k \mid$ $\left.\sum_{\ell=1}^{k} X_{\ell}=n\right\}$. Show that $n^{-1} \tau_{n}$ converges to 2 almost surely.

Exercise 5. The problem of the collector. Let $\left(X_{k}\right)_{k>1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_{n}=\inf \{m \geq$ $\left.1:\left\{X_{1}, \ldots, X_{m}\right\}=\{1, \ldots, n\}\right\}$ be the first time for which all values have been observed.
(i) Let $\tau_{n}^{(k)}=\inf \left\{m \geq 1:\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|=k\right\}$. Prove that the random variables $\left(\tau_{n}^{(k)}-\tau_{n}^{(k-1)}\right)_{2 \leq k \leq n}$ are independent and calculate their respective distributions.
(ii) Deduce that $\frac{\tau_{n}}{n \log n} \rightarrow 1$ in probability as $n \rightarrow \infty$, i.e. for any $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{\tau_{n}}{n \log n}-1\right|>\varepsilon\right) \rightarrow 0
$$

Exercise 6. The number of buses stopping till time t. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d random variables on $(\Omega, \mathcal{A}, \mathbb{P}), X_{1}$ being an exponential random variable with parameter 1 . Define $T_{0}=0, T_{n}=X_{1}+\cdots+X_{n}$, and for any $t>0, N_{t}=\max \left\{n \geq 0 \mid T_{n} \leq t\right\}$.
(i) For any $n \geq 1$, calculate the joint distribution of $\left(T_{1}, \ldots, T_{n}\right)$.
(ii) Deduce the distribution of N_{t}, for arbitrary t.

