Probability, homework 9, due December 9.

Exercise 1. Let X_{λ} be a real random variable, with Poisson distribution with parameter λ . Calculate the characteristic function of X_{λ} . Conclude that $(X_{\lambda} - \lambda)/\sqrt{\lambda}$ converges in distribution to a standard Gaussian, as $\lambda \to \infty$.

Exercise 2. Find an example of real random variables $(X_n)_{n\geq 1}$, X, in L^1 , such that $(X_n)_{n\geq 1}$ converges to X in distribution and $\mathbb{E}(X_n)$ converges, but not towards $\mathbb{E}(X)$.

Exercise 3. Assume a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is such that Ω is countable and $\mathcal{A} = 2^{\Omega}$. Prove that convergence in probability and convergence almost sure are the same.

Exercise 4. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. Bernoulli random variables, on the same probability space, with parameter 1/2 ($\mathbb{P}(X_n = 0) = \mathbb{P}(X_n = 1) = 1/2$), and let τ_n be the hitting time of level n by the partial sums, i.e. $\tau_n = \inf\{k \mid \sum_{\ell=1}^k X_\ell = n\}$. Show that $n^{-1}\tau_n$ converges to 2 almost surely.

Exercise 5. The problem of the collector. Let $(X_k)_{k\geq 1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_n = \inf\{m \geq 1 : \{X_1, \ldots, X_m\} = \{1, \ldots, n\}$ be the first time for which all values have been observed.

- (i) Let $\tau_n^{(k)} = \inf\{m \ge 1 : |\{X_1, \dots, X_m\}| = k\}$. Prove that the random variables $(\tau_n^{(k)} \tau_n^{(k-1)})_{2 \le k \le n}$ are independent and calculate their respective distributions.
- (ii) Deduce that $\frac{\tau_n}{n \log n} \to 1$ in probability as $n \to \infty$, i.e. for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{\tau_n}{n\log n} - 1\right| > \varepsilon\right) \to 0.$$

Exercise 6. The number of buses stopping till time t. Let $(X_n)_{n\geq 1}$ be i.i.d random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, X_1 being an exponential random variable with parameter 1. Define $T_0 = 0$, $T_n = X_1 + \cdots + X_n$, and for any t > 0, $N_t = \max\{n \geq 0 \mid T_n \leq t\}$.

- (i) For any $n \ge 1$, calculate the joint distribution of (T_1, \ldots, T_n) .
- (ii) Deduce the distribution of N_t , for arbitrary t.