Probability, homework 11, due November 22.

Exercise 1. For fixed $p, q \in[0,1]$, consider a Markov chain X with two states $\{1,2\}$, with transition matrix

$$
\pi=(\pi(i, j))_{1 \leq i, j \leq 2}=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

(i) For which p, q is the chain irreducible? Aperiodic?
(ii) What are the invariant probability measures of X ?
(iii) Compute $\pi^{(n)}, n \geq 1$.
(iv) When X is irreducible, for this invariant probability measure μ, calculate

$$
\begin{aligned}
d_{1}(n) & :=\frac{1}{2}\left(\left|\mathbb{P}_{1}\left(X_{n}=1\right)-\mu(1)\right|+\left|\mathbb{P}_{1}\left(X_{n}=2\right)-\mu(2)\right|\right) \\
d_{2}(n) & :=\frac{1}{2}\left(\left|\mathbb{P}_{2}\left(X_{n}=1\right)-\mu(1)\right|+\left|\mathbb{P}_{2}\left(X_{n}=2\right)-\mu(2)\right|\right)
\end{aligned}
$$

where \mathbb{P}_{x} means the chain starts at x.
Exercise 2. Consider a Markov chain X with state space \mathbb{N} and transition matrix $\pi(0,0)=r_{0}, \pi(0,1)=p_{0}$, and $\forall i \geq 1, \pi(i, i-1)=q_{i}, \pi(i, i)=r_{i}, \pi(i, i+1)=p_{i}$, with $p_{0}, r_{0}>0, p_{0}+r_{0}=1$ and for all $i \geq 1, p_{i}, q_{i}>0, p_{i}+q_{i}+r_{i}=1$. Prove that the chain is irreducible, aperiodic. Give a necessary and sufficient condition for the chain to have an invariant probability measure.

Exercise 3. Consider a Markov chain X with state space $\{0,1, \ldots, n\}$ and transition matrix

$$
\begin{aligned}
\pi(0, k) & =\frac{1}{2^{k+1}}, 0 \leq k \leq n-1, \pi(0, n)=\frac{1}{2^{n}} \\
\pi(k, k-1) & =1,1 \leq k \leq n-1, \pi(n, n)=\pi(n, n-1)=\frac{1}{2}
\end{aligned}
$$

(i) Prove that the chain has a unique invariant probability measure μ and calculate it.
(ii) Prove that for any $0 \leq x_{0} \leq n-1, \pi^{\left(x_{0}+1\right)}\left(x_{0}, \cdot\right)=\mu$.
(iii) Prove that for any $0 \leq x_{0} \leq n, \pi^{(n)}\left(x_{0}, \cdot\right)=\mu$.
(iv) For any $t \geq 1$, calculate

$$
d(t):=\frac{1}{2} \sum_{x=0}^{n}\left|\pi^{(t)}(n, x)-\mu(x)\right|
$$

and plot $t \mapsto d(t)$.
Exercise 4. Let (G, \cdot) be a group, μ a probability measure on G and X the Markov chain such that $\pi(g, h \cdot g)=\mu(h)$. We call such a process X a random walk on G with jump kernel μ.
(i) Explain why the usual random walk on \mathbb{Z}^{d} is such process. Same question for the usual random walk on $(\mathbb{Z} / n \mathbb{Z})^{d}, n \geq 1$.
(ii) Consider the following shuffling of a deck of $n \geq 2$ cards: pick two such distinct cards uniformly at random and exhange their positions in the deck. Show that this is also an example of a random walk on a group.
(iii) Let $\mathcal{H}=\left\{h_{1} \cdot h_{2} \cdots h_{n}, \mu\left(h_{i}\right)>0,1 \leq i \leq n, n \in \mathbb{N}\right\}$. Discuss irreductibility of X depending on \mathcal{H}.
(iv) If X is irreducible on finite G, what are the invariant probability measures? What if G is not finite?
(v) Make some search to define a reversible Markov chain. In the context of this exercise, show that X is reversible if and only if $\mu(h)=\mu\left(h^{-1}\right)$ for any $h \in G$.
(vi) Give an example of an irreducible random walk on a group which is not reversible.
Exercise 5. An ant walks on a round clock, starting at 0 , up to the moment it has visited all numbers. At each second, it walks either clockwise or counterclockwise, with probability $1 / 2$ to a neighbouring number, and through independent steps. Let X be the final position of the ant. Prove it is equidistributed on $\{1,2, \ldots, 11\}$.

