Probability, homework 2, due September 20.

Exercise 1. Let \mathcal{A} be a σ -algebra, \mathbb{P} a probability measure and $(A_n)_{n\geq 1}$ a sequence of events in \mathcal{A} which converges to A. Prove that

- (i) $A \in \mathcal{A}$;
- (ii) $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.

Exercise 2. Suppose a distribution function F is given by

$$F(x) = \frac{1}{4} \mathbb{1}_{[0,\infty)}(x) + \frac{1}{2} \mathbb{1}_{[1,\infty)}(x) + \frac{1}{4} \mathbb{1}_{[2,\infty)}(x)$$

What is the probability of the following events, (-1/2, 1/2), (-1/2, 3/2), (2/3, 5/2), $(3, \infty)$?

Exercise 3. Let μ be the Lebesgue measure on \mathbb{R} . Build a sequence of functions $(f_n)_{n\geq 0}$, $0\leq f_n\leq 1$, such that $\int f_n d\mu \to 0$ but for any $x\in \mathbb{R}$, $(f_n(x))_{n\geq 0}$ does not converge.

Exercise 4. Let X be a random variable in $L^1(\Omega, \mathcal{A}, \mathbb{P})$. Let $(A_n)_{n\geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}(A_N) \underset{n\to\infty}{\longrightarrow} 0$. Prove that $\mathbb{E}(X\mathbb{1}_{A_n}) \underset{n\to\infty}{\longrightarrow} 0$.

Exercise 5. Let $(d_n)_{n\geq 0}$ be a sequence in (0,1), and $K_0=[0,1]$. We define iteratively $(K_n)_{n\geq 0}$ in the following way. From K_n , which is the union of closed disjoint intervals, we define K_{n+1} by removing from each interval of K_n an open interval, centered at the middle of the previous one, with length d_n times the length of the previous one. Let $K=\bigcap_{n\geq 0}K_n$ (K is called a Cantor set).

- (a) Prove that K is an uncountable compact set, with empty interior, and whose points are all accumulation points
 - (b) What is the Lebesgue measure of K?

Exercise 6. Let X be a nonnegative random variable. Prove that $\mathbb{E}(X) < +\infty$ if and only if $\sum_{n \in \mathbb{N}} \mathbb{P}(X \ge n) < \infty$.

Exercise 7. Convergence in measure. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space. and $(f_n)_{n\geq 1}, f: \Omega \to \mathbb{R}$ measurable (for the Borel σ -field on \mathbb{R}). We say that $(f_n)_{n\geq 1}$ converges in measure to f if for any $\varepsilon > 0$ we have

$$\mu(|f_n - f| > \varepsilon) \xrightarrow[n \to \infty]{} 0.$$

- (i) Show that $\int |f f_n| d\mu \to 0$ implies that f_n converges to f in measure. Is the reciprocal true?
- (ii) Show that if $f_n \to f$ μ -almost surely, then $f_n \to f$ in measure. Is the reciprocal true?
- (iii) Show that if $f_n \to f$ in measure, there exists a subsequence of $(f_n)_{n\geq 1}$ which converges μ -almost surely.
- (iv) (A stronger dominated convergence theorem) We assume that $f_n \to f$ in measure and $|f_n| \le g$ for some integrable $g: \Omega \to \mathbb{R}$, for any $n \ge 1$.
 - (a) Show that $|f| \leq g \mu$ -a.s.
 - (b) Deduce that $\int |f_n f| d\mu \to 0$.

Exercise 8. Consider a probability space $(\Omega, \mathcal{A}, \mu)$ and $(A_n)_n$ a sequence in \mathcal{A} . Let $f: \Omega \to \mathbb{R}$ be measurable (for the Borel σ -field on \mathbb{R}) such that $\int_{\Omega} |\mathbb{1}_{A_n} - f| d\mu \to 0$ as $n \to \infty$. Prove that there exists $A \in \mathcal{A}$ such that $f = \mathbb{1}_A$ μ -a.s., i.e. $\mu(f = \mathbb{1}_A) = 1$.

Exercise 9. Consider a probability space (E, \mathcal{A}, μ) and $f_n : E \to \mathbb{R}$ measurable, $n \ge 1$. Assume $f_n \to f$ μ -almost surely. Prove that for any $\varepsilon > 0$ there exists a set $A \in \mathcal{A}$ such that $\mu(A) < \varepsilon$ and the convergence $f_n \to f$ is uniform on A^c .