Probability, homework 3 due September 27.

Exercise 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Prove that if $A \cap B=\emptyset$ and A, B are independent, then $\mathbb{P}(A)=0$ or $\mathbb{P}(B)=0$.

Exercise 2. Let X be a nonnegative random variable with null expectation. Prove that it is 0 almost surely.

Exercise 3. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^{X}.
(i) \mathbb{P}^{X} has Gaussian density $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$, for some $\sigma>0$ and $\mu \in \mathbb{R}$;
(ii) \mathbb{P}^{X} has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$ for some $\lambda>0$;
(iii) $\mathbb{P}^{X}=p \delta_{a}+q \delta_{b}$ where $p+q=1, p, q \geq 0$ and $a, b \in \mathbb{R}$;
(iv) \mathbb{P}^{X} is the Poisson distribution: $\mathbb{P}^{X}(\{n\})=e^{-\lambda} \frac{\lambda^{n}}{n!}$ for any integer $n \geq 0$, for some $\lambda>0$.

Exercise 4. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 5. Let X be uniformly distributed on $[0,1]$ and $\lambda>0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ.

Exercise 6. A samouraï wants to create a triangle with a (rigid) spaghetti. With his saber, he cuts this spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

Exercise 7. Assume that X_{1}, X_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$. Let $Y^{(n)}=n \inf \left\{X_{i}, 1 \leq i \leq n\right\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(f\left(Y^{(n)}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{+}} f(u) e^{-u} \mathrm{~d} u
$$

Exercise 8. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. For any $y \in \mathbb{R}$, let $N(y) \in \mathbb{R} \cup\{\infty\}$ be the number of solutions to $f(x)=y$. Prove that N is measurable.

Exercise 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be additive $(f(a+b)=f(a)+f(b)$ for all $a, b)$ and measurable. Prove that it is linear.

What if f is not assumed to be measurable? What about $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$?

