Probability, homework 6, due October 18.

Exercise 1. Let $(X_i)_{i\geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2} = \frac{1}{4} \text{ a.s.}$$

Exercise 2. Let f be a continuous function on [0, 1]. Calculate the asymptotics, as $n \to \infty$, of

$$\int_{[0,1]^n} f\left(\frac{x_1 + \dots + x_n}{n}\right) \mathrm{d}x_1 \dots \mathrm{d}x_n.$$

Exercise 3. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R} , can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

a) Let $S_n(x) = B^{(n,x)}/n$, where $B^{(n,x)}$ is a binomial random variable with parameters n and x: $B^{(n,x)} = \sum_{\ell=1}^{n} X_i$ where the X_i 's are independent and $\mathbb{P}(X_i = 1) = x$, $\mathbb{P}(X_i = 0) = 1 - x$. Prove that $B_n(x) = \mathbb{E}(f(S_n(x)))$.

b) Prove that $||B_n - f||_{L^{\infty}([0,1])} \to 0$ as $n \to \infty$.

Exercise 4. Calculate $\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$.

Exercise 5. Let $(X_n)_{n\geq 0}$ be a sequence of i.i.d random variables, with uniform distribution on [0, 1]. Let $Y_n = (X_n)^n$.

- (1) Calculate the distribution of Y_n .
- (2) Show that $(Y_n)_{n\geq 0}$ converges to 0 in probability.
- (3) Show that $(Y_n)_{n\geq 0}$ converges in L¹.
- (4) Show that almost surely $(Y_n)_{n>0}$ does not converge.

Long problem. The goal is to prove the Erdős-Kac theorem: if w(m) denotes the number of distinct prime factors of m and k is a random variable uniformly distributed on $[\![1, n]\!]$, then the following convergence in distribution holds:

$$\frac{w(k) - \log \log n}{\sqrt{\log \log n}} \xrightarrow[n \to \infty]{} \mathcal{N}(0, 1).$$

- (i) Prove that if $(X_n)_{n\geq 1}$ converges in distribution to $\mathcal{N}(0,1)$ and $\sup_{n\geq 1} \mathbb{E}[X_n^{2k}] < \infty$ for any $k \in \mathbb{N}$, then $\lim_{n\to\infty} \mathbb{E}[X_n^k] = \mathbb{E}[\mathcal{N}(0,1)^k]$ for any $k \in \mathbb{N}$.
- (ii) Prove that for any $x \in \mathbb{R}$ and $d \ge 1$ we have

$$\left| e^{\mathbf{i}x} - \sum_{\ell=0}^d \frac{(\mathbf{i}x)^\ell}{\ell!} \right| \le \frac{|x|^{d+1}}{(d+1)!}.$$

- (iii) Assume that $\lim_{n\to\infty} \mathbb{E}[X_n^k] = \mathbb{E}[\mathscr{N}(0,1)^k]$ for any $k \in \mathbb{N}$. Prove that X_n converges in distribution to X.
- (iv) Let $w_y(m)$ be the number of prime factors of m which are smaller than y. Let $(B_p)_p$ prime be independent random variables such that $\mathbb{P}(B_p = 1) = 1 - \mathbb{P}(B_p = 0) = \frac{1}{p}, W_y = \sum_{p \le y} B_p, \mu_y = \sum_{p \le y} \frac{1}{p}, \sigma_y^2 = \sum_{p \le y} (\frac{1}{p} - \frac{1}{p^2})$. Prove that if $y = n^{o(1)}$, then for any $d \in \mathbb{N}$ we have

$$\mathbb{E}\left[\left(\frac{w_y(k) - \mu_y}{\sigma_y}\right)^d\right] - \mathbb{E}\left[\left(\frac{W_y - \mu_y}{\sigma_y}\right)^d\right] \to 0$$

as $n \to \infty$.

(v) Conclude.