Probability, homework 6, due October 18.

Exercise 1. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}=\frac{1}{4} \text { a.s. }
$$

Exercise 2. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

Exercise 3. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

a) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: \quad B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
b) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 4. Calculate $\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}$.
Exercise 5. Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of i.i.d random variables, with uniform distribution on $[0,1]$. Let $Y_{n}=\left(X_{n}\right)^{n}$.
(1) Calculate the distribution of Y_{n}.
(2) Show that $\left(Y_{n}\right)_{n \geq 0}$ converges to 0 in probability.
(3) Show that $\left(Y_{n}\right)_{n \geq 0}$ converges in L^{1}.
(4) Show that almost surely $\left(Y_{n}\right)_{n \geq 0}$ does not converge.

Long problem. The goal is to prove the Erdős-Kac theorem: if $w(m)$ denotes the number of distinct prime factors of m and k is a random variable uniformly distributed on $\llbracket 1, n \rrbracket$, then the following convergence in distribution holds:

$$
\frac{w(k)-\log \log n}{\sqrt{\log \log n}} \underset{n \rightarrow \infty}{\longrightarrow} \mathscr{N}(0,1) .
$$

(i) Prove that if $\left(X_{n}\right)_{n \geq 1}$ converges in distribution to $\mathscr{N}(0,1)$ and $\sup _{n \geq 1} \mathbb{E}\left[X_{n}^{2 k}\right]<$ ∞ for any $k \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}^{k}\right]=\mathbb{E}\left[\mathscr{N}(0,1)^{k}\right]$ for any $k \in \mathbb{N}$.
(ii) Prove that for any $x \in \mathbb{R}$ and $d \geq 1$ we have

$$
\left|e^{\mathrm{i} x}-\sum_{\ell=0}^{d} \frac{(\mathrm{i} x)^{\ell}}{\ell!}\right| \leq \frac{|x|^{d+1}}{(d+1)!}
$$

(iii) Assume that $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}^{k}\right]=\mathbb{E}\left[\mathscr{N}(0,1)^{k}\right]$ for any $k \in \mathbb{N}$. Prove that X_{n} converges in distribution to X.
(iv) Let $w_{y}(m)$ be the number of prime factors of m which are smaller than y. Let $\left(B_{p}\right)_{p}$ prime be independent random variables such that $\mathbb{P}\left(B_{p}=1\right)=$ $1-\mathbb{P}\left(B_{p}=0\right)=\frac{1}{p}, W_{y}=\sum_{p \leq y} B_{p}, \mu_{y}=\sum_{p \leq y} \frac{1}{p}, \sigma_{y}^{2}=\sum_{p \leq y}\left(\frac{1}{p}-\frac{1}{p^{2}}\right)$. Prove that if $y=n^{\circ(1)}$, then for any $d \in \mathbb{N}$ we have

$$
\mathbb{E}\left[\left(\frac{w_{y}(k)-\mu_{y}}{\sigma_{y}}\right)^{d}\right]-\mathbb{E}\left[\left(\frac{W_{y}-\mu_{y}}{\sigma_{y}}\right)^{d}\right] \rightarrow 0
$$

as $n \rightarrow \infty$.
(v) Conclude.

