Probability, homework 8, due November 1st.

Exercise 1. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables, on the same probability space, with $\mathbb{E}\left(X_{\ell}\right)=\mu$ for any ℓ, and a weak correlation in the following sense: $\operatorname{Cov}\left(X_{k}, X_{\ell}\right) \leq f(|k-\ell|)$ for all indexes k, ℓ, where the sequence $(f(m))_{m \geq 0}$ converges to 0 as $m \rightarrow \infty$. Prove that $\left(n^{-1} \sum_{k=1}^{n} X_{k}\right)_{n \geq 1}$ converges to μ in L^{2}.

Exercise 2. A sequence of random variables $\left(X_{i}\right)_{i \geq 1}$ is said to be completely convergent to X if for any $\varepsilon>0$, we have $\sum_{i \geq 1} \mathbb{P}\left(\left|X_{i}-X\right|>\varepsilon\right)<\infty$. Prove that complete convergence implies almost sure convergence.

Exercise 3. Let X and Y be independent Gaussian random variables with null expectation and variance 1 . Show that $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are also independent $\mathcal{N}(0,1)$.

Exercise 4. For any $d \geq 1$, we admit that there is only one probability measure μ on \mathcal{S}_{d}, (the $(d-1)$-th dimensional sphere embedded in \mathbb{R}^{d}) that is uniform, in the following sense: for any isometry $A \in \mathrm{O}(d)$ (the orthogonal group in \mathbb{R}^{d}), and any continuous function $f: \mathcal{S}_{d} \rightarrow \mathbb{R}$,

$$
\int_{\mathcal{S}_{d}} f(x) \mathrm{d} \mu(x)=\int_{\mathcal{S}_{d}} f(A x) \mathrm{d} \mu(x) .
$$

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a vector of independent centered and reduced Gaussian random variables.
a) Prove that the random variable $U=X /\|X\|_{L^{2}}$ is uniformly distributed on the sphere.
b) Prove that, as $d \rightarrow \infty$, the main part of the globe is concentrated close to the Equator, i.e. for any $\varepsilon>0$,

$$
\int_{x \in \mathcal{S}_{d},\left|x_{1}\right|<\epsilon} \mathrm{d} \mu(x) \rightarrow 1 .
$$

Exercise 5. Let $\left(X_{1}, X_{2}\right)$ be a Gaussian vector with mean $\left(m_{1}, m_{2}\right)$ and nondegenerate covariance matrix $\left(C_{i j}\right)_{1 \leq i, j \leq 2}$. Prove that

$$
\mathbb{E}\left[X_{1} \mid X_{2}\right]=m_{1}+\frac{C_{12}}{C_{22}}\left(X_{2}-m_{2}\right)
$$

Exercise 6. Let X be a random variable such that $\mathbb{P}(X>t)=\exp (-t)$ for any $t \geq 0$. Let $Y=\min (X, s)$, where $s>0$ is fixed. Prove that, almost surely,

$$
\mathbb{E}[X \mid Y]=Y \mathbb{1}_{Y<s}+(1+s) \mathbb{1}_{Y=s} .
$$

Exercise 7. Let μ and ν be two probability measures such that $\mu \ll \nu$ and $\nu \ll \mu$ (usually abbreviated $\mu \sim \nu$). Let $X=\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$.
(i) Prove that $\nu(X=0)=0$.
(ii) Prove that $\frac{1}{X}=\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$ almost surely (for μ or ν).

Exercise 8. Let $\left(X_{n}\right)_{n \geq 0}$ be defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Assume this sequence converges in probability (under \mathbb{P}) to X. Let \mathbb{Q} be another probability measure on (Ω, \mathcal{A}) assumed to be absolutely continuous w.r.t. \mathbb{P}. Prove that $X_{n} \rightarrow X$ in probability under \mathbb{Q}.

