Random Matrix Theory, homework 2, due April 7.

Problem 1. The Circular Unitary Ensemble is a log-correlated random field. Let $\left(e^{\mathrm{i} \theta_{k}}\right)_{1 \leq k \leq N}$ be the eigenvalues of a Haar-distributed matrix in $\mathrm{U}(N)$. The eigenangles have joint probability distribution

$$
\mathbb{P}(\mathrm{d} \boldsymbol{\theta})=\frac{1}{N!} \prod_{1 \leq i<j \leq N}\left|e^{\mathrm{i} \theta_{i}}-e^{\mathrm{i} \theta_{j}}\right|^{2} \frac{\mathrm{~d} \theta_{1}}{2 \pi} \cdots \frac{\mathrm{~d} \theta_{N}}{2 \pi}
$$

(i) Prove that $\chi=\sum_{k=1}^{N} \delta_{\theta_{k}}$ is a determianntal point process with correlation kernel

$$
K(x, y)=K^{(N)}(x, y)=\frac{1}{2 \pi} \frac{\sin N \frac{x-y}{2}}{\sin \frac{x-y}{2}}
$$

with respect to the Lebesgue measure on $(0,2 \pi)$.
(ii) Let $\phi:[0,2 \pi) \rightarrow \mathbb{R}$ be bounded measurable. Prove that

$$
\mathbb{E} \prod_{k=1}^{N}\left(1+\phi\left(\theta_{k}\right)\right)=\sum_{n \geq 0} \frac{1}{n!} \int_{(0,2 \pi)^{n}} \prod_{j=1}^{n} \phi\left(x_{j}\right) \operatorname{det}_{n \times n} K\left(x_{i}, x_{j}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

You will need to explain why the right hand side converges.
(iii) Read Section 3 in the book Trace ideals and applications.
(iv) Let $A \subset[0,2 \pi)$ be measurable. On $\mathrm{L}^{2}(A)$, define $K \phi$ the convolution operator with kernel $K \phi$, where ϕ is bounded measurable:

$$
(K \phi)(f)(x)=\int K(x, y) \phi(y) f(y) \mathrm{d} y
$$

Prove that $K \mathbb{1}_{A}$ is trace-class with spectrum in $[0,1]$. Let $X=\chi(A)$. Show that

$$
\log \mathbb{E}\left(e^{\mathrm{i} \xi X}\right)=\log \operatorname{det}\left(\operatorname{Id}+K \mathbb{1}_{A}\left(e^{\mathrm{i} \xi}-1\right)\right)=-\sum_{k=1}^{\infty} \frac{\left(1-e^{\mathrm{i} \xi}\right)^{k}}{k} \operatorname{Tr}\left(\left(K \mathbb{1}_{A}\right)^{k}\right)
$$

(v) The formula $\log \mathbb{E}\left(e^{\mathrm{i} \xi X}\right)=\sum_{\ell=1}^{\infty} \mathrm{C}_{\ell}(X) \frac{(\mathrm{i} \xi)^{\ell}}{\ell!}$ defines the cumulants $\mathrm{C}_{\ell}(X)$ of the random variable X. Prove that for any $\ell \geq 3$,

$$
\mathrm{C}_{\ell}(X)=(-1)^{\ell}(\ell-1)!\operatorname{Tr}\left(K \mathbb{1}_{A}-\left(K \mathbb{1}_{A}\right)^{\ell}\right)+\sum_{j=2}^{\ell-1} \alpha_{j \ell} \mathrm{C}_{j}(X)
$$

for some universal constants $\alpha_{j \ell}$.
(vi) Take $A=[0, x)(x \in(0,2 \pi))$ in this question and the next one. Prove that

$$
\mathrm{C}_{2}(X)=\int_{0}^{x} \mathrm{~d} u \int_{x}^{2 \pi} \mathrm{~d} v|K(u, v)|^{2} \underset{N \rightarrow \infty}{\sim} \pi^{-2} \log N
$$

(vii) Prove that $\mathrm{C}_{\ell}(X / \sqrt{\log N})$ converges to 0 as $N \rightarrow \infty$ for any $\ell \geq 3$. For this you can first prove the trace inequality

$$
0 \leq \operatorname{Tr}\left(K \mathbb{1}_{A}-\left(K \mathbb{1}_{A}\right)^{\ell}\right) \leq(\ell-1) \operatorname{Tr}\left(K \mathbb{1}_{A}-\left(K \mathbb{1}_{A}\right)^{2}\right)
$$

Show that $(X-\mathbb{E} X) / \sqrt{\log N}$ converges weakly to a Gaussian random variable with variance π^{-2}. Compare this result to the case of N independent uniform points on the circle.
(viii) Consider $X_{k}=\chi\left(\left[0, x_{k}\right)\right)-N x_{k} /(2 \pi)$ where $x_{k}=N^{-\alpha_{k}}, 0<\alpha_{1}<\cdots<\alpha_{\ell}<1$. Prove a joint central limit theorem for the random variables X_{1}, \ldots, X_{ℓ} as $N \rightarrow \infty$. Compare this result to the case of N independent uniform points on the circle.

Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble. Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:

$$
\mu(\mathrm{d} \boldsymbol{\lambda})=\frac{1}{Z_{N}} \prod_{1 \leq k<\ell \leq N}\left|\lambda_{k}-\lambda_{\ell}\right|^{2} e^{-\frac{N}{2} \sum_{k=1}^{N} \lambda_{k}^{2}} \mathrm{~d} \lambda_{1} \ldots \mathrm{~d} \lambda_{N}
$$

on the simplex $\lambda_{1}<\cdots<\lambda_{N}$. For a smooth $f: \mathbb{R} \rightarrow \mathbb{R}$ supported on $(-2+\kappa, 2-\kappa)(\kappa>0)$ we consider the general linear statistics $S_{N}(f)=\sum_{k=1}^{N} f\left(\lambda_{k}\right)-N \int f(s) \varrho(s) \mathrm{d} s$, where $\varrho(s)=(2 \pi)^{-1} \sqrt{\left(4-s^{2}\right)_{+}}$. We want to prove the weak convergence of $S_{N}(f)$ to a Gaussian random variable for large N, with no need of any normalization.

We are interested in the Fourier transform $Z(u)=\mathbb{E}_{\mu}\left(e^{\mathrm{i} u S_{N}(f)}\right)$. We will need a complex modification of the GUE, namely $\mathrm{d} \mu^{u}(\boldsymbol{\lambda})=\frac{e^{\mathrm{i} u s_{N}(f)}}{Z(u)} \mathrm{d} \mu(\boldsymbol{\lambda})$, assuming that $Z(u) \neq 0$. Let $s_{N}(z)=\frac{1}{N} \sum_{k} \frac{1}{z-\lambda_{k}}$ and $m_{N, u}(z)=\mathbb{E}^{\mu^{u}}\left(s_{N}(z)\right)$. The Stieltjes transform of the semicircle distribution is $m(z)=\int \frac{\varrho(s)}{z-s} \mathrm{~d} s=$ $\frac{z-\sqrt{z^{2}-4}}{2}$, where the square root is chosen so that m is holomorphic on $[-2,2]^{\text {c }}$ and $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$.
(i) Prove that

$$
\left(m_{N, u}(z)-m(z)\right)^{2}-\sqrt{z^{2}-4}\left(m_{N, u}(z)-m(z)\right)+\frac{\mathrm{i} u}{N} \int_{\mathbb{R}} \frac{f^{\prime}(s)}{z-s} \varrho_{1}^{(N, u)}(s) \mathrm{d} s=-\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)
$$

This is called the (first) loop equation. To derive it, you may first prove that

$$
m_{N, u}(z)^{2}+\int_{\mathbb{R}} \frac{-s+\mathrm{i} u N^{-1} f^{\prime}(s)}{z-s} \varrho_{1}^{(N, u)}(s) \mathrm{d} s=-\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)
$$

Hint: integrate by parts or change variables $\lambda_{k}=y_{k}+\varepsilon(\mathfrak{R e} / \Im \mathfrak{I m}) \frac{1}{z-y_{k}}$ and note $\partial_{\varepsilon=0} \log Z(u)=0$.
(ii) Remember the rigidity for Wigner matrices, in particular for GUE: for any $\xi, D>0$ there exists $C>0$ such that uniformly in $N \geq 1$ and $k \in \llbracket 1, N \rrbracket$ we have $\mu\left(\left|\lambda_{k}-\gamma_{k}\right|>N^{-\frac{2}{3}+\xi}(\hat{k})^{-\frac{1}{3}}\right) \leq$ $C N^{-D}$, where $\int_{-\infty}^{\gamma_{k}} \varrho(s \mathrm{~d} s)=\frac{k}{N}$ and $\hat{k}=\min (k, N+1-k)$. Assume $Z(u) \neq 0$. Prove that

$$
\left|\mu^{u}\right|\left(\left|\lambda_{k}-\gamma_{k}\right|>N^{-\frac{2}{3}+\xi}(\hat{k})^{-\frac{1}{3}}\right) \leq C \frac{N^{-D}}{|Z(u)|}
$$

where $\left|\mu^{u}\right|$ is the total variation of the complex measure μ^{u}. Conclude that uniformly in $z=E+\mathrm{i} \eta$, $-2+\kappa<E<2-\kappa, 0<|\eta|<1$, we have

$$
\left|\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)\right|=\mathrm{O}\left(\frac{N^{-2+2 \xi}}{\eta^{2}|Z(u)|^{2}}\right) .
$$

(iii) Prove that uniformly in $-2+\kappa<E<2-\kappa, N^{-1+\xi} \leq \eta \leq 1$, we have

$$
m_{N, u}(z)-m(z)=\frac{1}{\sqrt{z^{2}-4}} \frac{\mathrm{i} u}{N} \int_{\mathbb{R}} \frac{f^{\prime}(s)}{z-s} \varrho(s) \mathrm{d} s+\mathrm{O}\left(\frac{N^{-2+3 \xi}}{\eta^{2}|Z(u)|^{2}}\right)
$$

(iv) Let $\chi: \mathbb{R} \rightarrow \mathbb{R}^{+}$be a smooth function such that $\chi(y)=1$ for $|y|<1 / 2$ and $\chi(y)=0$ for $|y|>1$. Prove that for any $\lambda \in \mathbb{R}$, we have

$$
f(\lambda)=-\frac{1}{2 \pi} \iint_{\mathbb{R}^{2}} \frac{\mathrm{i} y f^{\prime \prime}(x) \chi(y)+\mathrm{i}\left(f(x)+\mathrm{i} y f^{\prime}(x)\right) \chi^{\prime}(y)}{x+\mathrm{i} y-\lambda} \mathrm{d} x \mathrm{~d} y
$$

where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy's integral formula based on Green's theorem, considering the quasi-analytic extension $(f(x)+$ i $\left.y f^{\prime}(x)\right) \chi(y)$.
(v) Note that $\partial_{u} \log Z(u)=\mathbb{E}_{\mu^{u}}\left(\mathrm{i} S_{N}(f)\right)$. Conclude that bulk linear statistics converge to a Gaussian random variable.

Exercise 1. Fluctuations for the Ginibre ensemble. Consider the joint distribution of eigenvalues from the Ginibre ensemble,

$$
\mathbb{P}(\mathrm{d} \boldsymbol{z})=\frac{1}{Z_{N}} \prod_{1 \leq i<j \leq N}\left|z_{i}-z_{j}\right|^{2} \prod_{i=1}^{N} e^{-N\left|z_{i}\right|^{2}} \mathrm{dA}\left(z_{i}\right)
$$

where dA is the Lebesgue measure on \mathbb{C}. Let \mathscr{C} be a smooth Jordan curve, with interior A, finite length $\ell(\mathscr{C})$, strictly included in the unit disk $\{|z|<1\}$. Let $X_{\mathscr{C}}=\chi(A)-\mathbb{E}(\chi(A))$ where $\chi=\sum_{i=1}^{N} \delta_{z_{i}}$. By mimicking the method from Problem 1, prove the weak convergence

$$
\frac{X_{\mathscr{C}}}{\ell(\mathscr{C})^{1 / 2} N^{1 / 4}} \rightarrow \mathscr{N}(0, c)
$$

as $N \rightarrow \infty$, with some c independent of \mathscr{C}. What about joint convergence of $\left(X_{\mathscr{C}_{1}}, \ldots, X_{\mathscr{C}_{n}}\right)$ where all Jordan curves $\mathscr{C}_{1}, \ldots, \mathscr{C}_{n}$ satisfy the above assumptions?

Exercise 2. The semicircle law for band matrices. Let H_{N} be a symmetric matrix with $H_{N}(i, j)$ a standard Bernoulli random variable when $|i-j| \leq W / 2$ or $||i-j|-N| \leq W / 2,0$ otherwise. All entries are independent, up to the symmetry constraint. Assume $1 \ll W \leq N$.

Prove that the empirical spectral measure of $W^{-1 / 2} H_{N}$ converges (in probability, say) to the semicircle distribution $\varrho(s)=(2 \pi)^{-1} \sqrt{\left(4-s^{2}\right)_{+}}$.

Open problem 1. In Exercise 1, what happens when the Jordan curve is not smooth and has infinite length? In particular, if $\log \operatorname{var}\left(X_{\mathscr{C}}\right) \sim \alpha(\mathscr{C}) \log N$, does $\alpha(\mathscr{C})$ only depend on the Hausdorff dimension of \mathscr{C} ? Or the Minkowski dimension?

Open problem 2. In Exercise 2, let u_{1}, \ldots, u_{N} be the L^{2}-normalized eigenvectors of H_{N} and $\alpha \in$ $(0,1), D>0$.

Assume $\alpha<1 / 2$. Prove that there exists $\delta>0$ such that for N greater than some $N_{0}(\alpha, D)$, with probability at least $1-N^{-D}$ the following holds: for any $k \in \llbracket 1, N \rrbracket,\left\|u_{k}\right\|_{\infty}>N^{-1 / 2+\delta}$.

Assume $\alpha>1 / 2$. Prove that for any $\delta>0$, for N greater than some $N_{0}(\alpha, D, \delta)$, with probability at least $1-N^{-D}$ the following holds: for any $k \in \llbracket 1, N \rrbracket,\left\|u_{k}\right\|_{\infty}<N^{-1 / 2+\delta}$.

