
Random Matrix Theory, homework 2, due April 7.

Problem 1. The Circular Unitary Ensemble is a log-correlated random field. Let (eiθk)1≤k≤N
be the eigenvalues of a Haar-distributed matrix in U(N). The eigenangles have joint probability dis-
tribution

P(dθ) =
1

N !

∏
1≤i<j≤N

|eiθi − eiθj |2 dθ1
2π
· · · dθN

2π
.

(i) Prove that χ =
∑N
k=1 δθk is a determianntal point process with correlation kernel

K(x, y) = K(N)(x, y) =
1

2π

sinN x−y
2

sin x−y
2

with respect to the Lebesgue measure on (0, 2π).
(ii) Let φ : [0, 2π)→ R be bounded measurable. Prove that

E
N∏
k=1

(1 + φ(θk)) =
∑
n≥0

1

n!

∫
(0,2π)n

n∏
j=1

φ(xj) det
n×n

K(xi, xj)dx1 . . . dxn.

You will need to explain why the right hand side converges.
(iii) Read Section 3 in the book Trace ideals and applications.
(iv) Let A ⊂ [0, 2π) be measurable. On L2(A), define Kφ the convolution operator with kernel Kφ,

where φ is bounded measurable:

(Kφ)(f)(x) =

∫
K(x, y)φ(y)f(y)dy.

Prove that K1A is trace-class with spectrum in [0, 1]. Let X = χ(A). Show that

logE(eiξX) = log det(Id +K1A(eiξ − 1)) = −
∞∑
k=1

(1− eiξ)k

k
Tr((K1A)k).

(v) The formula logE(eiξX) =
∑∞
`=1 C`(X) (iξ)`

`! defines the cumulants C`(X) of the random variable
X. Prove that for any ` ≥ 3,

C`(X) = (−1)`(`− 1)! Tr(K1A − (K1A)`) +

`−1∑
j=2

αj` Cj(X)

for some universal constants αj`.
(vi) Take A = [0, x) (x ∈ (0, 2π)) in this question and the next one. Prove that

C2(X) =

∫ x

0

du

∫ 2π

x

dv |K(u, v)|2 ∼
N→∞

π−2 logN.

(vii) Prove that C`(X/
√

logN) converges to 0 as N → ∞ for any ` ≥ 3. For this you can first prove
the trace inequality

0 ≤ Tr(K1A − (K1A)`) ≤ (`− 1)Tr(K1A − (K1A)2).

Show that (X − EX)/
√

logN converges weakly to a Gaussian random variable with variance
π−2. Compare this result to the case of N independent uniform points on the circle.

(viii) Consider Xk = χ([0, xk)) −Nxk/(2π) where xk = N−αk , 0 < α1 < · · · < α` < 1. Prove a joint
central limit theorem for the random variables X1, . . . , X` as N → ∞. Compare this result to
the case of N independent uniform points on the circle.
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Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble.
Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:

µ(dλ) =
1

ZN

∏
1≤k<`≤N

|λk − λ`|2e−
N
2

∑N
k=1 λ

2
kdλ1 . . . dλN

on the simplex λ1 < · · · < λN . For a smooth f : R→ R supported on (−2+κ, 2−κ) (κ > 0) we consider

the general linear statistics SN (f) =
∑N
k=1 f(λk) −N

∫
f(s)%(s)ds, where %(s) = (2π)−1

√
(4− s2)+.

We want to prove the weak convergence of SN (f) to a Gaussian random variable for large N , with no
need of any normalization.

We are interested in the Fourier transform Z(u) = Eµ(eiuSN (f)).We will need a complex modification

of the GUE, namely dµu(λ) = eiuSN (f)

Z(u) dµ(λ), assuming that Z(u) 6= 0. Let sN (z) = 1
N

∑
k

1
z−λk

and

mN,u(z) = Eµ
u

(sN (z)). The Stieltjes transform of the semicircle distribution is m(z) =
∫ %(s)
z−sds =

z−
√
z2−4
2 , where the square root is chosen so that m is holomorphic on [−2, 2]c and m(z) → 0 as

|z| → ∞.

(i) Prove that

(mN,u(z)−m(z))2 −
√
z2 − 4 (mN,u(z)−m(z)) +

iu

N

∫
R

f ′(s)

z − s
%
(N,u)
1 (s)ds = −varµu (sN (z)) .

This is called the (first) loop equation. To derive it, you may first prove that

mN,u(z)2 +

∫
R

−s+ iuN−1f ′(s)

z − s
%
(N,u)
1 (s)ds = −varµu (sN (z)) .

Hint: integrate by parts or change variables λk = yk+ε(Re/Im) 1
z−yk and note ∂ε=0 logZ(u) = 0.

(ii) Remember the rigidity for Wigner matrices, in particular for GUE: for any ξ,D > 0 there exists

C > 0 such that uniformly in N ≥ 1 and k ∈ J1, NK we have µ
(
|λk − γk| > N−

2
3+ξ(k̂)−

1
3

)
≤

CN−D, where
∫ γk
−∞ %(sds) = k

N and k̂ = min(k,N + 1− k). Assume Z(u) 6= 0. Prove that

|µu|
(
|λk − γk| > N−

2
3+ξ(k̂)−

1
3

)
≤ C N−D

|Z(u)|
,

where |µu| is the total variation of the complex measure µu. Conclude that uniformly in z = E+iη,
−2 + κ < E < 2− κ, 0 < |η| < 1, we have

|varµu (sN (z))| = O

(
N−2+2ξ

η2|Z(u)|2

)
.

(iii) Prove that uniformly in −2 + κ < E < 2− κ, N−1+ξ ≤ η ≤ 1, we have

mN,u(z)−m(z) =
1√

z2 − 4

iu

N

∫
R

f ′(s)

z − s
%(s)ds+ O

(
N−2+3ξ

η2|Z(u)|2

)
.

(iv) Let χ : R→ R+ be a smooth function such that χ(y) = 1 for |y| < 1/2 and χ(y) = 0 for |y| > 1.
Prove that for any λ ∈ R, we have

f(λ) = − 1

2π

∫∫
R2

iyf ′′(x)χ(y) + i(f(x) + iyf ′(x))χ′(y)

x+ iy − λ
dxdy,

where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy’s
integral formula based on Green’s theorem, considering the quasi-analytic extension (f(x) +
iyf ′(x))χ(y).

(v) Note that ∂u logZ(u) = Eµu(iSN (f)). Conclude that bulk linear statistics converge to a Gaussian
random variable.
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Exercise 1. Fluctuations for the Ginibre ensemble. Consider the joint distribution of eigenvalues
from the Ginibre ensemble,

P(dz) =
1

ZN

∏
1≤i<j≤N

|zi − zj |2
N∏
i=1

e−N |zi|
2

dA(zi)

where dA is the Lebesgue measure on C. Let C be a smooth Jordan curve, with interior A, finite length

`(C ), strictly included in the unit disk {|z| < 1}. Let XC = χ(A)− E(χ(A)) where χ =
∑N
i=1 δzi . By

mimicking the method from Problem 1, prove the weak convergence

XC

`(C )1/2N1/4
→ N (0, c)

as N → ∞, with some c independent of C . What about joint convergence of (XC1 , . . . , XCn) where
all Jordan curves C1, . . . ,Cn satisfy the above assumptions?

Exercise 2. The semicircle law for band matrices. Let HN be a symmetric matrix with HN (i, j)
a standard Bernoulli random variable when |i − j| ≤ W/2 or ||i − j| − N | ≤ W/2, 0 otherwise. All
entries are independent, up to the symmetry constraint. Assume 1�W ≤ N .

Prove that the empirical spectral measure of W−1/2HN converges (in probability, say) to the semi-

circle distribution %(s) = (2π)−1
√

(4− s2)+.

Open problem 1. In Exercise 1, what happens when the Jordan curve is not smooth and has infinite
length? In particular, if log var(XC ) ∼ α(C ) logN , does α(C ) only depend on the Hausdorff dimension
of C ? Or the Minkowski dimension?

Open problem 2. In Exercise 2, let u1, . . . , uN be the L2-normalized eigenvectors of HN and α ∈
(0, 1), D > 0.

Assume α < 1/2. Prove that there exists δ > 0 such that for N greater than some N0(α,D), with
probability at least 1−N−D the following holds: for any k ∈ J1, NK, ‖uk‖∞ > N−1/2+δ.

Assume α > 1/2. Prove that for any δ > 0, for N greater than some N0(α,D, δ), with probability
at least 1−N−D the following holds: for any k ∈ J1, NK, ‖uk‖∞ < N−1/2+δ.


