Stochastic analysis, homework 1.

Exercise 1. Let $X_{i}, i \geq 1$, be iid random variables, $X_{i} \geq 0, E\left(X_{i}\right)=1$. Prove that if $Y_{n}=\prod_{1}^{n} X_{k}, \mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right),\left(Y_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale.

Prove that if $\mathbb{P}\left(X_{1}=1\right)<1, Y_{n}$ converges to 0 almost surely.
Exercise 2. Let ($X_{n}, n \geq 0$) be a non-negative supermartingale. Show the following maximal ineqality: for $a>0$,

$$
a \mathbb{P}\left(\sup _{\llbracket 0, n \rrbracket} X_{k}>a\right) \leq \mathbb{E}\left(X_{0}\right) .
$$

Exercise 3. Let $X_{0}>0$, and at time $n+1$ you get $\epsilon_{n} Y_{n}$ where Y_{n} was your stake at time n, the ϵ_{n} 's are iid and $\mathbb{P}\left(\epsilon_{n}=1\right)=p=1-\mathbb{P}\left(\epsilon_{n}=-1\right), p \in(1 / 2,1)$: what you own at time $n+1$ is

$$
X_{n+1}=X_{n}+\epsilon_{n+1} Y_{n},
$$

where $Y_{n} \in \mathcal{F}_{n}, 0 \leq Y_{n} \leq X_{n}, \mathcal{F}_{n}=\sigma\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. The game lasts at some finite time $T \in \mathbb{N}^{*}$.

You want to maximize the expected return $\mathbb{E}\left(\log \frac{X_{n}}{X_{0}}\right)$, by finding the good strategy, i.e. what suitable \mathcal{F}_{n}-measurable function Y_{n} to choose. Prove that for some $\lambda>0$ explicit in terms of $p,\left(\left(\log X_{n}\right)-n \lambda, n \geq 0\right)$ is a $\left(\mathcal{F}_{n}\right)$-supermartingale, so that

$$
\mathbb{E}\left(\log \frac{X_{n}}{X_{0}}\right) \leq n \lambda .
$$

Find a strategy such that equality occurs in the above equation.
Exercise 4. Let $\left(S_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)$-martingale and τ a stopping time with finite expectation. Assume that there is a $c>0$ such that, for all $n, \mathbb{E}\left(\left|S_{n+1}-S_{n}\right| \mid\right.$ $\left.\mathcal{F}_{n}\right)<c$.

Prove that $\left(S_{\tau \wedge n}\right)_{n \geq 0}$ is a uniformly bounded martingale, and that $\mathbb{E}\left(S_{\tau}\right)=$ $\mathbb{E}\left(S_{0}\right)$.

Consider now the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=$ $\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. For some $a \in \mathbb{N}^{*}$, let $\tau=\inf \left\{n \mid S_{n}=-a\right\}$. Prove that

$$
\mathbb{E}(\tau)=\infty
$$

Exercise 5. As previously, consider the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2, \mathcal{F}_{n}=\sigma\left(X_{i}, 0 \leq i \leq n\right)$.

Prove that $\left(S_{n}^{2}-n, n \geq 0\right)$ is a (\mathcal{F}_{n})-martingale. Let τ be a bounded stopping time. Prove that $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$.

Take now $\tau=\inf \left\{n \mid S_{n} \in\{-a, b\}\right\}$, where $a, b \in \mathbb{N}^{*}$. Prove that $\mathbb{E}\left(S_{\tau}\right)=0$ and $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$. What is $\mathbb{P}\left(S_{\tau}=-a\right)$? What is $\mathbb{E}(\tau)$? Get the last result of the previous exercise by justifying the limit $b \rightarrow \infty$.

Exercise 6. Let $X_{n}, n \geq 0$, be iid complex random variables such that $\mathbb{E}\left(X_{1}\right)=$ $0,0<\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. For some parameter $\alpha>0$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}} .
$$

Prove that if $\alpha>1 / 2, S_{n}$ converges almost surely. What if $0<\alpha \leq 1 / 2$?

