Stochastic analysis, homework 2.

In all the following, B is a Brownian motion.

Exercise 1

1 Calculate $\mathbb{E}\left(B_{s} B_{t}^{2}\right), \mathbb{E}\left(B_{t} \mid \mathcal{F}_{s}\right), \mathbb{E}\left(B_{t} \mid B_{s}\right)$, for $t>s>0$.
2 What is $\mathbb{E}\left(B_{s}^{2} B_{t}^{2}\right)$, still for $t>s$?
3 What is the law of $B_{t}+B_{s}$? Same question for $\lambda_{1} B_{t_{1}}+\cdots+\lambda_{k} B_{t_{k}}$ $\left(0<t_{1}<\cdots<t_{k}\right)$? What is the law of $\int_{0}^{1} B_{s} \mathrm{~d} s$?

Exercise 2 Convergence types.

1 Study the convergence in probability of $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ as $t \rightarrow \infty$.
2 What about the almost sure convergence of $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ as $t \rightarrow \infty$?
Exercise 3 Martingales from Brownian motion. Amongst the following processes, which ones are \mathcal{F}-martingales, where \mathcal{F} is the natural filtration of $\left(B_{s}, s \geq\right.$ $0) ? B_{t}^{2}-t, B_{t}^{3}-3 \int_{0}^{t} B_{s} \mathrm{~d} s, B_{t}^{3}-3 t B_{t}, t B_{t}-\int_{0}^{t} B_{s} \mathrm{~d} s$.

Exercise 4 Scaling and equalities in law.

1 Let $T_{a}=\inf \left\{t \mid B_{t}=a\right\}$ and $S_{1}=\sup \left\{B_{s}, s \leq 1\right\}$. Prove that $T_{a} \stackrel{\text { law }}{=} a^{2} T_{1}$. Prove that $T_{1} \stackrel{\text { law }}{=} 1 / S_{1}^{2}$.

2 Let $g_{t}=\sup \left\{s \leq t \mid B_{s}=0\right\}$ and $d_{t}=\inf \left\{s \geq t \mid B_{s}=0\right\}$. Prove that g is not a stopping time, and that d is a stopping time. Prove that $g_{t} \stackrel{\text { law }}{=} t g_{1}, d_{t} \stackrel{\text { law }}{=} t d_{1}$, $g_{t} \stackrel{\text { law }}{=} \frac{t}{d_{1}} \stackrel{\text { law }}{=} \frac{1}{d_{1 / t}}$.

Exercise 5 A convergence in law. Prove that as $t \rightarrow \infty,\left(\int_{0}^{t} e^{B_{s}} \mathrm{~d} s\right)^{1 / \sqrt{t}}$ converges in law towards $e^{|\mathcal{N}|}$, where \mathcal{N} is a standard Gaussian random variable.

Exercise 6 The zeros of Brownian motion. Let $\mathcal{Z}=\left\{t \geq 0 \mid B_{t}=0\right\}$.
1 Prove that \mathcal{Z} is almost surely a closed and unbounded set, with no isolated points.

2 Prove that \mathcal{Z} is almost surely uncountable.

