Stochastic calculus, final exam

Lecture notes are not allowed. Six exercises perfectly solved give the maximum grade 100/100.
Exercise 1. Let $X_{n}, n \geq 0$, be independent random variables. Assume that $\mathbb{E}\left(X_{j}\right)=0$ and there exists a $\beta>0$ such that $\mathbb{E}\left(\left|X_{j}\right|^{2}\right)=j^{-\beta}$ for any $j \geq 1$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$. For which values of β does S converge almost surely? Prove it.

Exercise 2. Let B be a Brownian motion starting at $x>0$, and $T_{0}=\inf \left\{s \geq 0: B_{s}=0\right\}$. What is the distribution of $\sup _{t \leq T_{0}} B_{t}$? You can apply a stopping time theorem to a positive martingale.

Exercise 3. Let B be a standard Brownian motion and $M_{t}=\max _{0 \leq s \leq t} B_{s}$.
(1) Explain why M_{t} has the same distribution as $\sqrt{t} M_{1}$.
(2) What is the density of M_{t} ?

Exercise 4. Let $\left(S_{n}\right)_{n \geq 0}$ be a standard random walk.
(i) State Donsker's theorem for $\left(S_{n}\right)_{n \geq 0}$.
(ii) As $N \rightarrow \infty$, find the asymptotics for

$$
\mathbb{E}\left(\max _{N / 2<n<N}\left|S_{n}\right|\right)
$$

Exercise 5.

(i) Write the multidimensional Itô formula.
(ii) Let B^{1} and B^{2} be independent Brownian motions, defined on the same probability space. Let

$$
X_{t}=e^{B_{t}^{1}} \int_{0}^{t} e^{-B_{s}^{1}} \mathrm{~d} B_{s}^{2}
$$

What simple stochastic differential equation does it satisfy?
Exercise 6. Sketch the proof that the Brownian motion is transcient in dimension $d \geq 3$.
Exercise 7. Let $a>0, \gamma \geq 0$, and $T_{a, \gamma}=\inf \left\{t \geq 0 \mid B_{t}+\gamma t=a\right\}$. Prove that the density of $T_{a, \gamma}$ with respect to the Lebesgue measure on \mathbb{R}_{+}is

$$
\frac{a}{\sqrt{2 \pi t^{3}}} e^{\frac{-(a-\gamma t)^{2}}{2 t}}
$$

If you solve the case $\gamma=0$, you get $3 / 4$ of the points.
Exercise 8. Assume the process $\left(X_{t}\right)_{t \geq 0}$ satisfies $\mathrm{d} X_{t}=X_{t}\left(\mu_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} B_{t}\right)$ for some Brownian motion B which corresponds to the Wiener measure \mathbb{P}.
(i) Prove that $X_{t} e^{-\int_{0}^{t} \mu_{s} \mathrm{~d} s}$ is a local martingale under \mathbb{P}.
(ii) Find a probability \mathbb{Q} under which X is a local martingale.
(iii) Find a probability $\widetilde{\mathbb{Q}}$ under which X^{-1} is a local martingale.

Exercise 9. Let B be a standard Brownian motion. Justify the following stochastic differential equation has only one solution. In which sense? What does that mean?

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} t+\left(1-e^{-\left|X_{t}\right|}\right) X_{t} \mathrm{~d} B_{t}
$$

Find the solution.

Exercise 10.

(i) State the Feynman-Kac theorem.
(ii) Let B be a Brownian motion starting at 0 . What partial differential equation does $\mathbb{E}\left(e^{\int_{t}^{T} B_{s}^{2} \mathrm{~d} s}\right)$ satisfy? What are the boundary conditions?

