Stochastic calculus, homework 10, due December 5th.

Below B is a standard Brownian motion, adapted with respect to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$.

Exercise 1. We consider the stochastic differential equation $\mathrm{d} X_{t}=\alpha X_{t} \mathrm{~d} t+$ $\beta X_{t} \mathrm{~d} B_{t}, X_{0}=0$.
(i) Prove that $X_{t}=e^{\left(\alpha-\frac{\beta^{2}}{2}\right) t+\beta B_{t}}$ is a solution.
(ii) Show that, for $\alpha \geq 0, X$ is a submartingale with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. For which α is it a martingale?
Exercise 2. We consider the stochastic differential equation $\mathrm{d} X_{t}=\left(b+\beta X_{t}\right) \mathrm{d} B_{t}$, $X_{0}=x$ with $x \neq-b / \beta$.
(i) For any $y \neq-b / \beta$, we define $h(y)=\frac{1}{\beta} \log \left|\frac{b+\beta y}{b+\beta x}\right|$. What equation does $Y_{t}=$ $h\left(X_{t}\right)$ satisfy?
(ii) What is the solution to the initial stochastic differential equation?

Exercise 3. We consider the stochastic differential equation $\mathrm{d} X_{t}=a\left(b-X_{t}\right) \mathrm{d} t+$ $\sigma \sqrt{X_{t}} \mathrm{~d} B_{t}, X_{0}=x$ with $x>0$. Assume there exists a solution in the strongest sense you want, and that this solution is as integrable as you want.

Calculate the expectation and variance of X_{t}
Exercise 4. We consider the stochastic differential equation $\mathrm{d} X_{t}=-\alpha^{2} X_{t}^{2}(1-$ $\left.X_{t}\right) \mathrm{d} t+\alpha X_{t}\left(1-X_{t}\right) \mathrm{d} B_{t}, X_{0}=x$ with $x \in(0,1)$.
(i) Write a program to simulate a trajectory and show a sample plot.
(ii) Let $Y_{t}=X_{t} /\left(1-X_{t}\right)$. What stochastic differential equation does Y satisfy?
(iii) Show that

$$
X_{t}=\frac{x e^{\alpha B_{t}-\alpha^{2} \frac{t}{2}}}{x e^{\alpha B_{t}-\alpha^{2} \frac{t}{2}}+1-x}
$$

is a solution.

