Stochastic calculus, homework 11, due December 12th.

Exercise 1. Let B be a Brownian motion. For $n \ge 0$, let

$$H_n(x,y) = (\partial_\alpha)^n \mid_{\alpha=0} e^{\alpha x - \frac{\alpha^2}{2}y}.$$

Prove that for $n = 1, 2, 3, H_n(B_t, t)$ is a martingale. Prove it for any n.

Exercise 2.

- (i) Read the lecture notes and prove in a fully rigorous way (ssuming Theorem 5.9) the following fact: the dynamics of the Ehrenfest urn converge to the Ornstein Uhlenbeck process for a large number of particles.
- (ii) Assume we start with 10^{25} particles in the right side and none on the other side. How long does it take to reach equilibrium if we transfer one particle every ε second? At equilibrium, what are the typical fluctuations for the number of particles in the first urn?

Exercise 3. Consider the general equation

$$dX_t = (c(t) + d(t)X_t)dt + (e(t) + f(t)X_t)dB_t, X_0 = 0.$$

where c, d, e, f are deterministic. We try to find a solution of type $X = X^{(1)}X^{(2)}$ where

$$dX_t^{(1)} = d(t)X_t^{(1)}dt + f(t)X_t^{(1)}dB_t, \ X_0^{(1)} = 1,$$

$$dX_t^{(2)} = a(t)dt + b(t)dB_t, \ X_0^{(2)} = X_0,$$

and a, b are stochastic processes to be chosen.

- (i) Prove that $X_t^{(1)} = e^{\int_0^t f(s) dB_s \frac{1}{2} \int_0^t f(s)^2 ds + \int_0^t d(s) ds}$ is a solution. (ii) Identify necessary formulas for a and b.

(iii) Conclude a general formula for the solution of the initial equation.

Exercise 4. For a given Brownian motion B, let X be a solution of

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}B_t + b(X_t)\mathrm{d}t, \ X_0 = x,$$

and $X^{(n)}$ be a solution of

$$\mathrm{d}X_t = \sigma^{(n)}(X_t)\mathrm{d}B_t + b^{(n)}(X_t)\mathrm{d}t, \ X_0 = x,$$

where all functions are Lipschitz with the same absolute constant independent of n. Assume pointwise convergence of $\sigma^{(n)}$ to σ , and of $b^{(n)}$ to b. Prove that for any t > 0, as $n \to \infty$,

$$\mathbb{E}\left(\sup_{[0,t]}|X_s - X_s^{(n)}|^2\right) \to 0.$$

Exercise 5. Let B^1 and B^2 be independent Brownian motions, defined on the same probability space. Let

$$X_t = e^{B_t^1} \int_0^t e^{-B_s^1} \mathrm{d}B_s^2, \ Z_t = \sinh B_t^1.$$

Prove that both processes have the same distribution.