Stochastic calculus, homework 11, due December 12th.

Exercise 1. Let B be a Brownian motion. For $n \geq 0$, let

$$
H_{n}(x, y)=\left.\left(\partial_{\alpha}\right)^{n}\right|_{\alpha=0} e^{\alpha x-\frac{\alpha^{2}}{2} y}
$$

Prove that for $n=1,2,3, H_{n}\left(B_{t}, t\right)$ is a martingale. Prove it for any n.

Exercise 2.

(i) Read the lecture notes and prove in a fully rigorous way (ssuming Theorem 5.9) the following fact: the dynamics of the Ehrenfest urn converge to the Ornstein Uhlenbeck process for a large number of particles.
(ii) Assume we start with 10^{25} particles in the right side and none on the other side. How long does it take to reach equilibrium if we transfer one particle every ε second? At equilibrium, what are the typical fluctuations for the number of particles in the first urn?
Exercise 3. Consider the general equation

$$
\mathrm{d} X_{t}=\left(c(t)+d(t) X_{t}\right) \mathrm{d} t+\left(e(t)+f(t) X_{t}\right) \mathrm{d} B_{t}, \quad X_{0}=0 .
$$

where c, d, e, f are deterministic. We try to find a solution of type $X=X^{(1)} X^{(2)}$ where

$$
\begin{aligned}
& \mathrm{d} X_{t}^{(1)}=d(t) X_{t}^{(1)} \mathrm{d} t+f(t) X_{t}^{(1)} \mathrm{d} B_{t}, X_{0}^{(1)}=1 \\
& \mathrm{~d} X_{t}^{(2)}=a(t) \mathrm{d} t+b(t) \mathrm{d} B_{t}, X_{0}^{(2)}=X_{0}
\end{aligned}
$$

and a, b are stochastic processes to be chosen.
(i) Prove that $X_{t}^{(1)}=e^{\int_{0}^{t} f(s) \mathrm{d} B_{s}-\frac{1}{2} \int_{0}^{t} f(s)^{2} \mathrm{~d} s+\int_{0}^{t} d(s) \mathrm{d} s}$ is a solution.
(ii) Identify necessary formulas for a and b.
(iii) Conclude a general formula for the solution of the initial equation.

Exercise 4. For a given Brownian motion B, let X be a solution of

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t, \quad X_{0}=x
$$

and $X^{(n)}$ be a solution of

$$
\mathrm{d} X_{t}=\sigma^{(n)}\left(X_{t}\right) \mathrm{d} B_{t}+b^{(n)}\left(X_{t}\right) \mathrm{d} t, X_{0}=x
$$

where all functions are Lipschitz with the same absolute constant independent of n. Assume pointwise convergence of $\sigma^{(n)}$ to σ, and of $b^{(n)}$ to b. Prove that for any $t>0$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left(\sup _{[0, t]}\left|X_{s}-X_{s}^{(n)}\right|^{2}\right) \rightarrow 0
$$

Exercise 5. Let B^{1} and B^{2} be independent Brownian motions, defined on the same probability space. Let

$$
X_{t}=e^{B_{t}^{1}} \int_{0}^{t} e^{-B_{s}^{1}} \mathrm{~d} B_{s}^{2}, Z_{t}=\sinh B_{t}^{1}
$$

Prove that both processes have the same distribution.

