Stochastic calculus, homework 6, due November 7th.

Exercise 1. Let B be a Brownian motion. Prove that almost surely we have $\sup_{s>0} B_s = +\infty$ and $\inf_{s\geq 0} B_s = -\infty$.

Exercise 2. Let *B* be a Brownian motion and $T_a = \inf\{s \ge 0 : B_s = a\}$. Prove (with no calculation) that for any b > a > 0 the random variable $T_b - T_a$ is independent of T_a .

Simulate a Brownian motion (based on the method suggested by Donsker's theorem, with a thousand time steps between times 0 and 1) and the corresponding process $(T_a)_{a\geq 0}$. Give a printed copy of the code with the homework (no matter which language) and a samples of both curves.

Exercise 3. Let M and N be two martingales bounded in L^2 , and define

$$\langle M, N \rangle = \frac{1}{2} \left(\langle M + N \rangle - \langle N \rangle - \langle M \rangle \right).$$

Prove that $MN - \langle M, N \rangle$ is a martingale.

Exercise 4. Let B be a Brownian motion starting at x > 0, and $T_0 = \inf\{s \ge 0 : B_s = 0\}$. That is the distribution of $\sup_{t \le T_0} B_t$?

Hint: at some point in class we studied maxima of positive martingales converging to 0.

Exercise 5: bonus. Let f be a continuous function on \mathbb{R} .

- (1) Prove that if $(f(B_t), t \ge 0)$ is a $(\mathcal{F}_t)_{t\ge 0}$ martingale, then f is affine.
- (2) Suppose that $(f(B_t), t \ge 0)$ is a $(\mathcal{F}_t)_{t\ge 0}$ submartingale: prove that f has no proper local maximum. Hint: for c > 0, use the stopping times $T = T_c \wedge T_{-1}$ and $S = \inf\{t \ge T : B_t = -1 \text{ or } c + \epsilon \text{ or } c \epsilon\}.$
- (3) Suppose that $(f(B_t), t \ge 0)$ is a $(\mathcal{F}_t)_{t\ge 0}$ submartingale: prove that f is convex.