Stochastic calculus, homework 7, due November 14th.

Exercise 1. Let $X_{t}=\int_{0}^{t}(\sin s) \mathrm{d} B_{s}$. Prove that this is a Gaussian process. What are $\mathbb{E}\left(X_{t}\right)$ and $\mathbb{E}\left(X_{s} X_{t}\right)$? Prove that

$$
X_{t}=(\sin t) B_{t}-\int_{0}^{t}(\cos s) B_{s} \mathrm{~d} s
$$

Exercise 2. Prove that if f is a deterministic continuous square integrable function,

$$
\mathbb{E}\left(B_{t} \int_{0}^{\infty} f(s) \mathrm{d} B_{s}\right)=\int_{0}^{t} f(s) \mathrm{d} s
$$

Exercise 3. Assume f is a deterministic continuous function. What is the limit in probability of $\frac{1}{B_{t}} \int_{0}^{t} f(s) \mathrm{d} B_{s}$ as $t \rightarrow 0$?

