Stochastic calculus, homework 8, due November 21st.

Below $B, B^{(1)}$ and $B^{(2)}$ are standard, independent, Brownian motions.
Exercise 1. Apply Itô's forula to write the following processes as the sum of a local martingale and a finite variation process.
(i) $X_{t}=B_{t}^{2}$;
(ii) $X_{t}=e^{B_{t}}+t^{3}$;
(iii) $X_{t}=B_{t}^{3}-3 t B_{t}$;
(iv) $X_{t}=\cosh \left(B_{t}\right)$;
(v) $X_{t}=\left(B_{t}^{2}+1\right)^{-1}$;
(vi) $X_{t}=\left(B_{t}^{(1)}\right)^{2}+\left(B_{t}^{(2)}\right)^{2}$.

Exercise 2. Let $X_{t}=e^{\int_{0}^{t} u(s) \mathrm{d} s}$ and $Y_{t}=Y_{0}+\int_{0}^{t} v(s) e^{-\int_{0}^{s} u(r) \mathrm{d} r} \mathrm{~d} B_{s}$ where u and v are deterministic functions. Let $Z_{t}=X_{t} Y_{t}$. Prove that

$$
\mathrm{d} Z_{t}=u(t) Z_{t} \mathrm{~d} t+v(t) \mathrm{d} B_{t} .
$$

Exercise 3. For any $t \in[0,1)$, let $Z_{t}=\frac{1}{\sqrt{1-t}} e^{-\frac{B_{t}^{2}}{2(1-t)}}$.
(i) Prove that $\left(Z_{t}\right)_{0 \leq t<1}$ is a martingale which converges almost surely to 0 as $t \rightarrow 1$.
(ii) Calculate $\mathbb{E}\left(Z_{t}\right)$.
(iii) Write Z as $Z_{t}=e^{\int_{0}^{t} X_{s} \mathrm{~d} B_{s}-\frac{1}{2} \int_{0}^{t} X_{s}^{2} \mathrm{~d} s}$ for some explicit process X.

Exercise 4. Let $A_{t}=\int_{0}^{t} e^{B_{s}+\nu s} \mathrm{~d} s$ and assume the process S satisfies $\mathrm{d} S_{t}=$ $S_{t}\left(r \mathrm{~d} t+\sigma \mathrm{d} B_{t}\right)$. For a smooth function f, prove that $f\left(t, S_{t}, A_{t}\right)$ is local martingale if and only if f satisfies an explicit partial differential equation.

Exercise 5. Assume $\mathrm{d} X_{t}=\mathrm{d} B_{t}+\frac{1}{X_{t}} \mathrm{~d} t$. Show that X_{t}^{-1} is a local martingale. Is it a martingale?

