Stochastic calculus, homework 9, due November 28th.

Below $B, B^{(1)}, B^{(2)} \ldots$ are standard, independent, Brownian motions.
Exercise 1. Prove that the following processes are martingales with respect to the Brownian filtration.
(i) $X_{t}=e^{\frac{t}{2}} \cos \left(B_{t}\right)$;
(ii) $X_{t}=\left(B_{t}+t\right) e^{-B_{t}-\frac{t}{2}}$.

Exercise 2. Let X be a stochastic proces starting at X_{0} and satisfying $\mathrm{d} X_{t}=$ $\left(-\alpha X_{t}+\beta\right) \mathrm{d} t+\sigma \mathrm{d} B_{t}$, where $\alpha>0$.
(i) Give an explicit expression for X_{t}.
(ii) Calculate $\operatorname{Cov}\left(X_{s}, X_{t}\right)$ for any $s<t$.

Exercise 3. Let $M^{(1)}, \ldots, M^{(d)}$ be local martingales starting at 0 .
(i) Prove that the following assertions are equivalent:
(i) The processes $M^{(1)}, \ldots, M^{(d)}$ are independent standard Brownian motions.
(ii) For any $1 \leq k, \ell \leq d$ and $t \geq 0,\left\langle M^{(k)}, M^{(\ell)}\right\rangle_{t}=\mathbb{1}_{k=\ell} t$.

Hint: find, understand and rewrite the proof from the lecture notes.
(ii) As an example, consider a Brownian motion B, and define the process \tilde{B} through

$$
\tilde{B}_{t}=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) \mathrm{d} B_{s},
$$

where $\operatorname{sgn}(x)=1$ if $x \geq 0,-1$ if $x<0$. Prove that \tilde{B} is a Brownian motion. Is it almost surely equal to B ?
Exercise 4. Assume the process $\left(S_{t}\right)_{t \geq 0}$ satisfies $\mathrm{d} S_{t}=S_{t}\left(r \mathrm{~d} t+\sigma \mathrm{d} B_{t}\right)$ for some Brownian motion B which corresponds to the Wiener measure \mathbb{P}. Let $Z_{t}=$ $e^{\frac{1}{t} \int_{0}^{t} \log S_{s} \mathrm{~d} s}$. We want to calculate $C=\mathbb{E}_{\mathbb{P}}\left(\left(Z_{t}-S_{t}\right)_{+}\right)$
(i) Prove that if we define $\mathrm{d} \mathbb{Q}=e^{\sigma B_{t}-\sigma^{2} \frac{t}{2}} \mathrm{~d} \mathbb{P}$ then

$$
e^{-r t} \mathbb{E}_{\mathbb{P}}\left(\left(Z_{t}-S_{t}\right)_{+}\right)=\mathbb{E}_{\mathbb{Q}}\left(\left(\frac{Z_{t}}{S_{t}}-1\right)_{+}\right) .
$$

(ii) Let $\widetilde{B}_{t}=B_{t}-\sigma t$. Write $\frac{Z_{t}}{S_{t}}$ as $e^{\alpha t-\int_{0}^{t} \beta_{s} \mathrm{~d} \widetilde{B}_{s}}$.
(iii) Explain how to calculate C from the knowledge of $\mathbb{E}\left(\left(\widetilde{S}_{t}-K\right)_{+}\right)$where \widetilde{S}_{t} ius an explict geometric Brownian motion.
Exercise 5. Assume the process $\left(X_{t}\right)_{t \geq 0}$ satisfies $\mathrm{d} X_{t}=X_{t}\left(\mu_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} B_{t}\right)$ for some Brownian motion B which corresponds to the Wiener measure \mathbb{P}.
(i) Prove that $X_{t} e^{-\int_{0}^{t} \mu_{s} \mathrm{~d} s}$ is a local martingale under \mathbb{P}.
(ii) Find a probability \mathbb{Q} under which X is a local martingale.
(iii) Find a probability $\widetilde{\mathbb{Q}}$ under which X^{-1} is a local martingale.

Exercise 6. (bonus) Let B be a Brownian motion, $a>0, \gamma \in \mathbb{R}$, and $S_{a, \gamma}=$ $\inf \left\{t \geq 0| | B_{t}+\gamma t \mid=a\right\}$. Are $S_{a, \gamma}$ and $B_{S_{a, \gamma}}+\gamma S_{a, \gamma}$ independent?

