Stochastic calculus, midterm exam

Lecture notes are not allowed. Six exercises perfectly solved give the maximum grade 100/100.

Exercise 1. Let $(X_i)_{i\geq 1}$ be i.i.d. uniform on [0,1]. What is the limit of

$$\frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2}$$

as $n \to \infty$?

Exercise 2. Let Y_1, Y_2, Y_3 be independent $\mathcal{N}(0,1)$ random variables. Let

$$X_1 = Y_2 + 2Y_3, \ X_2 = Y_1 - 3Y_2 + xY_3.$$

for some real number x.

- (i) Explain why $\mathbf{X} = (X_1, X_2)$ is a Gaussian vector.
- (ii) For what values of x are X_1 and X_2 independent?
- (iii) Give an example of a vector with Gaussian entries which is not a Gaussian vector.

Exercise 3. Let X be a real Gaussian random variable with mean 0 and variance 7. Calculate

- (i) $\mathbb{E}(e^{\lambda X})$ for any $\lambda \in \mathbb{C}$; (ii) $\mathbb{E}(X^7 3X^2 + 12X 4)$.

Exercise 4. Let X_1, X_2, \ldots be independent random variables and $\mathbb{P}(X_j = 1) = \mathbb{P}(X_j = -1) =$ $\mathbb{P}(X_j = 0) = 1/3$ for any j. Let $S_n = X_1 + \cdots + X_n$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.

- (i) Calculate $\mathbb{E}(S_n)$, $\mathbb{E}(S_n^2)$.
- (ii) Is S_n a $(\mathcal{F}_n)_{n>0}$ -martingale?
- (iii) If m < n, calculate $\mathbb{E}(S_n^2 \mid \mathcal{F}_m)$.
- (iv) If m < n, calculate $\mathbb{E}(X_m \mid S_n)$.

Exercise 5. Let $X_i, i \ge 1$, be i.i.d. random variables, $X_i \ge 0, \mathbb{E}(X_i) = 1$. Prove that if $Y_n =$ $\prod_{1}^{n} X_{k}, \mathcal{F}_{n} = \sigma(X_{k}, k \leq n), (Y_{n})_{n \geq 0} \text{ is a } (\mathcal{F}_{n}) \text{-martingale.}$

Prove that if $\mathbb{P}(X_1 = 1) < 1$, Y_n converges to 0 almost surely.

Exercise 6. Let $(X_i)_{i\geq 1}$ be a sequence of i.i.d. random variables with mean 0 and finite variance $\mathbb{E}(X_{i}^{2}) = \sigma^{2} > 0.$ Let $\bar{S_{n}} = X_{1} + \dots + X_{n}.$

- (i) State Donsker's theorem.
- (ii) Prove that $\lim_{n\to\infty} \mathbb{E}\left(\frac{|S_n|}{\sqrt{n}}\right) = \sqrt{\frac{2}{\pi}}\sigma.$

Exercise 7. Let *B* be a Brownian motion. Calculate $\mathbb{E}\left(e^{\int_0^1 B_s ds}\right)$.

Exercise 8. Let B be a Brownian motion and $\mathcal{F}_t = \sigma(B_s, s \leq t)$.

- (i) Show that $(B_t^2 t)_{t>0}$ is a $(\mathcal{F}_t)_{t>0}$ -martingale.
- (ii) Is there a deterministic function $(f_t)_{t\geq 0}$ such that $(e^{(B_t^2-t)-f_t})_{t\geq 0}$ is a $(\mathcal{F}_t)_{t\geq 0}$ -martingale?

Exercise 9. State the stopping time theorem for uniformly integrable continuous martingales. What are the main intermediate lemmas for the proof?

Exercise 10. Let $X_n, n \ge 0$, be independent random variables. Assume that $\mathbb{E}(X_i) = 0$ and there exists a $\alpha > 0$ such that $\mathbb{E}(|X_j|^2) = j^{-\alpha}$ for any $j \ge 1$. Let $S_n = \sum_{k=1}^n X_k$. For which values of α does S converge almost surely?