Stochastic calculus, midterm exam

Lecture notes are not allowed. Six exercises perfectly solved give the maximum grade 100/100.
Exercise 1. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. uniform on $[0,1]$. What is the limit of

$$
\frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}
$$

as $n \rightarrow \infty$?

Exercise 2. Let Y_{1}, Y_{2}, Y_{3} be independent $\mathscr{N}(0,1)$ random variables. Let

$$
X_{1}=Y_{2}+2 Y_{3}, \quad X_{2}=Y_{1}-3 Y_{2}+x Y_{3}
$$

for some real number x.
(i) Explain why $\mathbf{X}=\left(X_{1}, X_{2}\right)$ is a Gaussian vector.
(ii) For what values of x are X_{1} and X_{2} independent?
(iii) Give an example of a vector with Gaussian entries which is not a Gaussian vector.

Exercise 3. Let X be a real Gaussian random variable with mean 0 and variance 7. Calculate
(i) $\mathbb{E}\left(e^{\lambda X}\right)$ for any $\lambda \in \mathbb{C}$;
(ii) $\mathbb{E}\left(X^{7}-3 X^{2}+12 X-4\right)$.

Exercise 4. Let X_{1}, X_{2}, \ldots be independent random variables and $\mathbb{P}\left(X_{j}=1\right)=\mathbb{P}\left(X_{j}=-1\right)=$ $\mathbb{P}\left(X_{j}=0\right)=1 / 3$ for any j. Let $S_{n}=X_{1}+\cdots+X_{n}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(i) Calculate $\mathbb{E}\left(S_{n}\right), \mathbb{E}\left(S_{n}^{2}\right)$.
(ii) Is S_{n} a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale?
(iii) If $m<n$, calculate $\mathbb{E}\left(S_{n}^{2} \mid \mathcal{F}_{m}\right)$.
(iv) If $m<n$, calculate $\mathbb{E}\left(X_{m} \mid S_{n}\right)$.

Exercise 5. Let $X_{i}, i \geq 1$, be i.i.d. random variables, $X_{i} \geq 0, \mathbb{E}\left(X_{i}\right)=1$. Prove that if $Y_{n}=$ $\prod_{1}^{n} X_{k}, \mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right),\left(Y_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale.

Prove that if $\mathbb{P}\left(X_{1}=1\right)<1, Y_{n}$ converges to 0 almost surely.
Exercise 6. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables with mean 0 and finite variance $\mathbb{E}\left(X_{j}^{2}\right)=\sigma^{2}>0$. Let $S_{n}=X_{1}+\cdots+X_{n}$.
(i) State Donsker's theorem.
(ii) Prove that $\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{\left|S_{n}\right|}{\sqrt{n}}\right)=\sqrt{\frac{2}{\pi}} \sigma$.

Exercise 7. Let B be a Brownian motion. Calculate $\mathbb{E}\left(e^{\int_{0}^{1} B_{s} \mathrm{~d} s}\right)$.
Exercise 8. Let B be a Brownian motion and $\mathcal{F}_{t}=\sigma\left(B_{s}, s \leq t\right)$.
(i) Show that $\left(B_{t}^{2}-t\right)_{t \geq 0}$ is a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-martingale.
(ii) Is there a deterministic function $\left(f_{t}\right)_{t \geq 0}$ such that $\left(e^{\left(B_{t}^{2}-t\right)-f_{t}}\right)_{t \geq 0}$ is a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-martingale?

Exercise 9. State the stopping time theorem for uniformly integrable continuous martingales. What are the main intermediate lemmas for the proof?

Exercise 10. Let $X_{n}, n \geq 0$, be independent random variables. Assume that $\mathbb{E}\left(X_{j}\right)=0$ and there exists a $\alpha>0$ such that $\mathbb{E}\left(\left|X_{j}\right|^{2}\right)=j^{-\alpha}$ for any $j \geq 1$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$. For which values of α does S converge almost surely?

