Stochastic calculus, homework 2, due September 25.

Exercise 1. Let $\left(X_{n}, n \geq 0\right)$ be a non-negative supermartingale. Show the following maximal ineqality: for $a>0$,

$$
a \mathbb{P}\left(\sup _{\llbracket 0, n \rrbracket} X_{k}>a\right) \leq \mathbb{E}\left(X_{0}\right) .
$$

Exercise 2. Let $X_{0}>0$, and at time $n+1$ you get $\epsilon_{n} Y_{n}$ where Y_{n} was your stake at time n, the ϵ_{n} 's are iid and $\mathbb{P}\left(\epsilon_{n}=1\right)=p=1-\mathbb{P}\left(\epsilon_{n}=-1\right)$, $p \in(1 / 2,1)$: what you own at time $n+1$ is

$$
X_{n+1}=X_{n}+\epsilon_{n+1} Y_{n}
$$

where $Y_{n} \in \mathcal{F}_{n}, 0 \leq Y_{n} \leq X_{n}, \mathcal{F}_{n}=\sigma\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$.
You want to maximize the expected return $\mathbb{E}\left(\log \frac{X_{n}}{X_{0}}\right)$, by finding the good strategy, i.e. what suitable \mathcal{F}_{n}-measurable function Y_{n} to choose. Prove that for some $\lambda \geq 0$ explicit in terms of $p,\left(\left(\log X_{n}\right)-n \lambda, n \geq 0\right)$ is a $\left(\mathcal{F}_{n}\right)$-supermartingale, so that

$$
\mathbb{E}\left(\log \frac{X_{n}}{X_{0}}\right) \leq n \lambda
$$

Find a strategy such that equality occurs in the above equation.
Exercise 3. Consider the random walk $S_{n}=\sum_{1}^{n} X_{k}, S_{0}=0$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2, \mathcal{F}_{n}=\sigma\left(X_{i}, 0 \leq i \leq n\right)$.

Prove that $\left(S_{n}^{2}-n, n \geq 0\right)$ is a $\left(\mathcal{F}_{n}\right)$-martingale. Let τ be a bounded stopping time. Prove that $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$.

Take now $\tau=\inf \left\{n \mid S_{n} \in\{-a, b\}\right\}$, where $a, b \in \mathbb{N}^{*}$. Prove that $\mathbb{E}\left(S_{\tau}\right)=0$ and $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$. What is $\mathbb{P}\left(S_{\tau}=-a\right)$? What is $\mathbb{E}(\tau)$?

By justifying the limit $b \rightarrow \infty$, prove that the expectation of the hitting time of $-a$ is infinity.

Exercise 4. In a game between a gambler and a croupier, suppose that the total capital in play is 1 . After the nth hand the proportion of the capital held by the gambler is denoted $X_{n} \in[0,1]$, thus that held by the croupier is $1-X_{n}$. We assume $X_{0}=p \in(0,1)$. The rules of the game are such that after n hands, the probability for the gambler to win the $(n+1)$ th hand is X_{n}; if he does, he gains half of the capital the croupier held after the nth hand, while if he loses he gives half of his capital. Let $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
a) Show that $\left(X_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale.
b) Show that $\left(X_{n}\right)_{n \geq 1}$ converges a.s. and in L^{2} towards a limit Z.
c) Show that $\mathbb{E}\left(X_{n+1}^{2}\right)=\mathbb{E}\left(3 X_{n}^{2}+X_{n}\right) / 4$. Deduce that $\mathbb{E}\left(Z^{2}\right)=\mathbb{E}(Z)=p$. What is the law of Z ?
d) For any $n \geq 0$, let $Y_{n}=2 X_{n+1}-X_{n}$. Find the conditional law of X_{n+1} knowing \mathcal{F}_{n}. Prove that $\mathbb{P}\left(Y_{n}=0 \mid \mathcal{F}_{n}\right)=1-X_{n}, \mathbb{P}\left(Y_{n}=1 \mid \mathcal{F}_{n}\right)=X_{n}$ and express the law of Y_{n}.
e) Let $G_{n}=\left\{Y_{n}=1\right\}, L_{n}=\left\{Y_{n}=0\right\}$. Prove that $Y_{n} \rightarrow Z$ a.s. and deduce that $\mathbb{P}\left(\liminf _{n \rightarrow \infty} G_{n}\right)=p, \mathbb{P}\left(\liminf _{n \rightarrow \infty} L_{n}\right)=1-p$. Are the variables $\left\{Y_{n}, n \geq 1\right\}$ independent?
f) Interpret the questions c), d), e) in terms of gain, loss, for the gambler.

Exercise 5 (bonus). Let X be a standard random walk in dimension 1, and for any positive integer $a, \tau_{a}=\inf \left\{n \geq 0 \mid X_{n}=a\right\}$. For any $\theta>0$, calculate

$$
\mathbb{E}\left((\cosh \theta)^{-\tau_{a}}\right)
$$

Hint: look for a pertinent martingale of exponential type.

