## Stochastic calculus, homework 3, due October 2nd.

## Exercise 1.

(i) Read carefully Theorems $1.9,1.10$ and 1.11 in the lecture notes.
(ii) Let $X_{n}, n \geq 0$, be i.i.d. real random variables such that $\mathbb{E}\left(X_{1}\right)=0,0<$ $\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. For some parameter $\alpha>0$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}
$$

Prove that if $\alpha>1 / 2, S_{n}$ converges almost surely. What if $0<\alpha \leq 1 / 2$ ?
Exercise 2. Let $B$ be a Brownian motion.
(i) Calculate $\mathbb{E}\left(B_{s} B_{t}^{2}\right), \mathbb{E}\left(B_{t} \mid \mathcal{F}_{s}\right), \mathbb{E}\left(B_{t} \mid B_{s}\right)$, for $t>s>0$.
(ii) What is $\mathbb{E}\left(B_{s}^{2} B_{t}^{2}\right)$, still for $t>s$ ?
(iii) What is the law of $B_{t}+B_{s}$ ? Same question for $\lambda_{1} B_{t_{1}}+\cdots+\lambda_{k} B_{t_{k}}(0<$ $t_{1}<\cdots<t_{k}$ )? What is the law of $\int_{0}^{1} B_{s} \mathrm{~d} s$ ?
Exercise 3. Let $B$ be a Brownian motion.
(i) Study the convergence in probability of $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ as $t \rightarrow \infty$.
(ii) What about the almost sure convergence of $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ as $t \rightarrow \infty$ ?

Exercise 4. Let $B$ be a Brownian motion, and for any $t \in[0,1]$ define

$$
W_{t}=B_{t}-t B_{1}
$$

It is called a Brownian bridge.
(i) Prove that $W$ is a Gaussian process and calculate its covariance.
(ii) Let $0<t_{1}<\cdots<t_{k}<1$. Prove that the vector $\left(W_{t_{1}}, W_{t_{2}}, \ldots, W_{t_{k}}\right)$ has dentity
$f\left(x_{1}, \ldots, x_{k}\right)=\sqrt{2 \pi} p_{t_{1}}\left(x_{1}\right) p_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \ldots p_{t_{k}-t_{k-1}}\left(x_{k}-x_{k-1}\right) p_{1-t_{k}}\left(x_{k}\right)$
where $p_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} /(2 t)}$.
(iii) Prove that the law of $\left(W_{t_{1}}, W_{t_{2}}, \ldots, W_{t_{k}}\right)$ is the same as the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{k}}\right)$ conditionally to $B_{1}=0$.
(iv) Prove that the processes $\left(W_{t}\right)_{0 \leq t \leq 1}$ and $\left(W_{1-t}\right)_{0 \leq t \leq 1}$ have the same distribution.
Exercise 5. Let $B$ be a Brownian motion, and for any $t \geq 0$ define

$$
Z_{t}=B_{t}-\int_{0}^{t} \frac{B_{s}}{s} \mathrm{~d} s
$$

Prove that $Z$ is a Gaussian process and calculate its covariance. Does this process have a famous name?

