Stochastic calculus, homework 9, due December 4th.

Below $B, B^{(1)}, B^{(2)}$... are standard, independent, Brownian motions.

Exercise 1. Prove that the following processes are martingales with respect to the Brownian filtration.

- (i) $X_t = e^{\frac{t}{2}}\cos(B_t);$ (ii) $X_t = (B_t + t)e^{-B_t \frac{t}{2}}.$

Exercise 2. Let X be a stochastic proces starting at X_0 and satisfying $dX_t =$ $(-\alpha X_t + \beta) dt + \sigma dB_t$, where $\alpha > 0$.

- (i) Give an explicit expression for X_t .
- (ii) Calculate $Cov(X_s, X_t)$ for any s < t.

Exercise 3. Let $M^{(1)}, \ldots, M^{(d)}$ be local martingales starting at 0.

- (i) Prove that the following assertions are equivalent:
 - (i) The processes $M^{(1)}, \ldots, M^{(d)}$ are independent standard Brownian mo-
 - (ii) For any $1 \le k, \ell \le d$ and $t \ge 0, \langle M^{(k)}, M^{(\ell)} \rangle_t = \mathbb{1}_{k=\ell} t$.

Hint: find, understand and rewrite the proof from the lecture notes.

(ii) As an example, consider a Brownian motion B, and define the process \overline{B} through

$$\tilde{B}_t = \int_0^t \operatorname{sgn}(B_s) dB_s,$$

where sgn(x) = 1 if $x \ge 0$, -1 if x < 0. Prove that \tilde{B} is a Brownian motion. Is it almost surely equal to B?

Exercise 4. Assume the process $(S_t)_{t>0}$ satisfies $dS_t = S_t(rdt + \sigma dB_t)$ for some Brownian motion B which corresponds to the Wiener measure \mathbb{P} . Let $Z_t =$ $e^{\frac{1}{t}\int_0^t \log S_s \mathrm{d}s}$. We want to calculate $C = \mathbb{E}_{\mathbb{P}}((Z_t - S_t)_+)$

(i) Prove that if we define $d\mathbb{Q} = e^{\sigma B_t - \sigma^2 \frac{t}{2}} d\mathbb{P}$ then

$$e^{-rt}\mathbb{E}_{\mathbb{P}}((Z_t - S_t)_+) = \mathbb{E}_{\mathbb{Q}}((\frac{Z_t}{S_t} - 1)_+).$$

- (ii) Let $\widetilde{B}_t = B_t \sigma t$. Write $\frac{Z_t}{S_t}$ as $e^{\alpha t \int_0^t \beta_s d\widetilde{B}_s}$.
- (iii) Explain how to calculate C from the knowledge of $\mathbb{E}((\widetilde{S}_t K)_+)$ where \widetilde{S}_t ius an explict geometric Brownian motion.

Exercise 5. Assume the process $(X_t)_{t\geq 0}$ satisfies $dX_t = X_t(\mu_t dt + \sigma_t dB_t)$ for some Brownian motion B which corresponds to the Wiener measure \mathbb{P} .

- (i) Prove that $X_t e^{-\int_0^t \mu_s ds}$ is a local martingale under \mathbb{P} .
- (ii) Find a probability $\mathbb Q$ under which X is a local martingale.
- (iii) Find a probability $\widetilde{\mathbb{Q}}$ under which X^{-1} is a local martingale.

Exercise 6. (bonus) Let B be a Brownian motion, $a > 0, \gamma \in \mathbb{R}$, and $S_{a,\gamma} =$ inf $\{t \geq 0 \mid |B_t + \gamma t| = a\}$. Are $S_{a,\gamma}$ and $B_{S_{a,\gamma}} + \gamma S_{a,\gamma}$ independent?