Stochastic calculus, homework 9, due Tuesday December 12th.

Below B is a standard Brownian motion, adapted with respect to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$.

Exercise 1. We consider the stochastic differential equation $\mathrm{d} X_{t}=\alpha X_{t} \mathrm{~d} t+$ $\beta X_{t} \mathrm{~d} B_{t}, X_{0}=1$.
(i) Prove that $X_{t}=e^{\left(\alpha-\frac{\beta^{2}}{2}\right) t+\beta B_{t}}$ is a solution.
(ii) Show that, for $\alpha \geq 0, X$ is a submartingale with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. For which α is it a martingale?

Exercise 2. We consider the stochastic differential equation $\mathrm{d} X_{t}=\left(b+\beta X_{t}\right) \mathrm{d} B_{t}$, $X_{0}=x$ with $x \neq-b / \beta$.
(i) For any $y \neq-b / \beta$, we define $h(y)=\frac{1}{\beta} \log \left|\frac{b+\beta y}{b+\beta x}\right|$. What equation does $Y_{t}=$ $h\left(X_{t}\right)$ satisfy?
(ii) What is the solution to the initial stochastic differential equation?

Exercise 3. We consider the stochastic differential equation $\mathrm{d} X_{t}=a\left(b-X_{t}\right) \mathrm{d} t+$ $\sigma \sqrt{X_{t}} \mathrm{~d} B_{t}, X_{0}=x$ with $x>0$. Assume there exists a solution in the strongest sense you want, and that this solution is as integrable as you want.

Calculate the expectation and variance of X_{t}
Exercise 4. We consider the stochastic differential equation $\mathrm{d} X_{t}=-\alpha^{2} X_{t}^{2}(1-$ $\left.X_{t}\right) \mathrm{d} t+\alpha X_{t}\left(1-X_{t}\right) \mathrm{d} B_{t}, X_{0}=x$ with $x \in(0,1)$.
(i) Write a program to simulate a trajectory and show a sample plot.
(ii) Let $Y_{t}=X_{t} /\left(1-X_{t}\right)$. What stochastic differential equation does Y satisfy?
(iii) Show that

$$
X_{t}=\frac{x e^{\alpha B_{t}-\alpha^{2} \frac{t}{2}}}{x e^{\alpha B_{t}-\alpha^{2} \frac{t}{2}}+1-x}
$$

is a solution.
Exercise 5. Consider the general equation

$$
\mathrm{d} X_{t}=\left(c(t)+d(t) X_{t}\right) \mathrm{d} t+\left(e(t)+f(t) X_{t}\right) \mathrm{d} B_{t}, \quad X_{0}=0
$$

where c, d, e, f are deterministic. We try to find a solution of type $X=X^{(1)} X^{(2)}$ where

$$
\begin{aligned}
& \mathrm{d} X_{t}^{(1)}=d(t) X_{t}^{(1)} \mathrm{d} t+f(t) X_{t}^{(1)} \mathrm{d} B_{t}, X_{0}^{(1)}=1, \\
& \mathrm{~d} X_{t}^{(2)}=a(t) \mathrm{d} t+b(t) \mathrm{d} B_{t}, X_{0}^{(2)}=X_{0}
\end{aligned}
$$

and a, b are stochastic processes to be chosen.
(i) Prove that $X_{t}^{(1)}=e^{\int_{0}^{t} f(s) \mathrm{d} B_{s}-\frac{1}{2} \int_{0}^{t} f(s)^{2} \mathrm{~d} s+\int_{0}^{t} d(s) \mathrm{d} s}$ is a solution.
(ii) Identify necessary formulas for a and b.
(iii) Conclude a general formula for the solution of the initial equation.

Exercise 6. For a given Brownian motion B, let X be a solution of

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t, \quad X_{0}=x
$$

and $X^{(n)}$ be a solution of

$$
\mathrm{d} X_{t}=\sigma^{(n)}\left(X_{t}\right) \mathrm{d} B_{t}+b^{(n)}\left(X_{t}\right) \mathrm{d} t, \quad X_{0}=x
$$

where all functions are Lipschitz with the same absolute constant independent of n. Assume pointwise convergence of $\sigma^{(n)}$ to σ, and of $b^{(n)}$ to b. Prove that for any $t>0$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left(\sup _{[0, t]}\left|X_{s}-X_{s}^{(n)}\right|^{2}\right) \rightarrow 0
$$

Exercise 7. Let B^{1} and B^{2} be independent Brownian motions, defined on the same probability space. Let

$$
X_{t}=e^{B_{t}^{1}} \int_{0}^{t} e^{-B_{s}^{1}} \mathrm{~d} B_{s}^{2}, Z_{t}=\sinh B_{t}^{1}
$$

Prove that both processes have the same distribution.

